1,468 research outputs found

    Energy-Efficient Heterogeneous Cellular Networks with Spectrum Underlay and Overlay Access

    Full text link
    In this paper, we provide joint subcarrier assignment and power allocation schemes for quality-of-service (QoS)-constrained energy-efficiency (EE) optimization in the downlink of an orthogonal frequency division multiple access (OFDMA)-based two-tier heterogeneous cellular network (HCN). Considering underlay transmission, where spectrum-efficiency (SE) is fully exploited, the EE solution involves tackling a complex mixed-combinatorial and non-convex optimization problem. With appropriate decomposition of the original problem and leveraging on the quasi-concavity of the EE function, we propose a dual-layer resource allocation approach and provide a complete solution using difference-of-two-concave-functions approximation, successive convex approximation, and gradient-search methods. On the other hand, the inherent inter-tier interference from spectrum underlay access may degrade EE particularly under dense small-cell deployment and large bandwidth utilization. We therefore develop a novel resource allocation approach based on the concepts of spectrum overlay access and resource efficiency (RE) (normalized EE-SE trade-off). Specifically, the optimization procedure is separated in this case such that the macro-cell optimal RE and corresponding bandwidth is first determined, then the EE of small-cells utilizing the remaining spectrum is maximized. Simulation results confirm the theoretical findings and demonstrate that the proposed resource allocation schemes can approach the optimal EE with each strategy being superior under certain system settings

    Energy Efficiency Optimization for CoMP-SWIPT Heterogeneous Networks

    Get PDF

    Energy Efficiency Optimization for PSOAM Mode-Groups based MIMO-NOMA Systems

    Get PDF
    Plane spiral orbital angular momentum (PSOAM) mode-groups (MGs) and multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) serve as two emerging techniques for achieving high spectral efficiency (SE) in the next-generation networks. In this paper, a PSOAM MGs based multi-user MIMO-NOMA system is studied, where the base station transmits data to users by utilizing the generated PSOAM beams. For such scenario, the interference between users in different PSOAM mode groups can be avoided, which leads to a significant performance enhancement. We aim to maximize the energy efficiency (EE) of the system subject to the constraints of the total transmission power and the minimum data rate. This designed optimization problem is non-convex owing to the interference among users, and hence is quite difficult to tackle directly. To solve this issue, we develop a dual layer resource allocation algorithm where the bisection method is exploited in the outer layer to obtain the optimal EE and a resource distributed iterative algorithm is exploited in the inner layer to optimize the transmit power. Besides, an alternative resource allocation algorithm with Deep Belief Networks (DBN) is proposed to cope with the requirement for low computational complexity. Simulation results verify the theoretical findings and demonstrate the proposed algorithms on the PSOAM MGs based MIMO-NOMA system can obtain a better performance comparing to the conventional MIMO-NOMA system in terms of EE

    Design, Modeling, and Performance Analysis of Multi-Antenna Heterogeneous Cellular Networks

    Get PDF
    This paper presents a stochastic geometry-based framework for the design and analysis of downlink multi-user multiple-input multiple-output (MIMO) heterogeneous cellular networks with linear zero-forcing transmit precoding and receive combining, assuming Rayleigh fading channels and perfect channel state information. The generalized tiers of base stations may differ in terms of their Poisson point process spatial density, number of transmit antennas, transmit power, artificial-biasing weight, and number of user equipments served per resource block. The spectral efficiency of a typical user equipped with multiple receive antennas is characterized using a non-direct moment-generating-function-based methodology with closed-form expressions of the useful received signal and aggregate network interference statistics systematically derived. In addition, the area spectral efficiency is formulated under different space-division multiple-access and single-user beamforming transmission schemes. We examine the impact of different cellular network deployments, propagation conditions, antenna configurations, and MIMO setups on the achievable performance through theoretical and simulation studies. Based on the state-of-the-art system parameters, the results highlight the inherent limitations of baseline single-input single-output transmission and conventional sparse macro-cell deployment, as well as the promising potential of multi-antenna communications and small-cell solution in interference-limited cellular environments

    Oral health education for visually impaired children in Hong Kong

    Get PDF
    published_or_final_versio

    Energy Efficient Resource Allocation for UCA-Based OAM-MIMO System

    Get PDF
    The combination of orbital angular momentum (OAM) and multi-input multi-output (MIMO) is identified as an effective solution to improve energy efficiency (EE) in the next-generation wireless communication. According to the orthogonality of OAM, we adopt uniform circular array (UCA) to establish the transmitter and receiver of the OAM-MIMO system in this paper. Our goal is to maximize the EE of the system whilst satisfying the maximum total transmit power and the minimum capacity requirement of each mode. Due to the inter-interference of different UCA at the same mode, the optimization problem involving the power allocation of modes is non-convex, thus is difficult to solve directly. To tackle this problem, the optimization problem is transformed into two sub-problems by using the fractional programming. Then we develop a dual-layer iteration algorithm where the nonconvex power allocation problem is transformed into a convex problem by exploiting the the first-order Taylor approximation in the inner layer, and the dichotomy is used to update EE in the outer layer. Simulation results confirm the effectiveness of the proposed solution, and demonstrate the superiority of the OAM-MIMO system over the conventional MIMO system from the perspective of EE

    Some pattern recognitions for a recommendation framework for higher education students’ generic competence development using machine learning

    Get PDF
    The project presented in this paper aims to formulate a recommendation framework that consolidates the higher education students’ particulars such as their academic background, current study and student activity records, their attended higher education institution’s expectations of graduate attributes and self-assessment of their own generic competencies. The gap between the higher education students’ generic competence development and their current statuses such as their academic performance and their student activity involvement was incorporated into the framework to come up with a recommendation for the student activities that lead to their generic competence development. For the formulation of the recommendation framework, the data mining tool Orange with some programming in Python and machine learning models was applied on 14,556 students’ activity and academic records in the case higher education institution to find out three major types of patterns between the students’ participation of the student activities and (1) their academic performance change, (2) their programmes of studies, and (3) their English results in the public examination. These findings are also discussed in this paperPeer Reviewe

    Cost-effectiveness of a health-social partnership transitional program for post-discharge medical patients

    Get PDF
    2012-2013 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    • 

    corecore