1,809 research outputs found

    Integrating Clinical Trial Imaging Data Resources Using Service-Oriented Architecture and Grid Computing

    Get PDF
    Clinical trials which use imaging typically require data management and workflow integration across several parties. We identify opportunities for all parties involved to realize benefits with a modular interoperability model based on service-oriented architecture and grid computing principles. We discuss middleware products for implementation of this model, and propose caGrid as an ideal candidate due to its healthcare focus; free, open source license; and mature developer tools and support

    A comparison of resting state functional magnetic resonance imaging to invasive electrocortical stimulation for sensorimotor mapping in pediatric patients

    Get PDF
    Localizing neurologic function within the brain remains a significant challenge in clinical neurosurgery. Invasive mapping with direct electrocortical stimulation currently is the clinical gold standard but is impractical in young or cognitively delayed patients who are unable to reliably perform tasks. Resting state functional magnetic resonance imaging non-invasively identifies resting state networks without the need for task performance, hence, is well suited to pediatric patients. We compared sensorimotor network localization by resting state fMRI to cortical stimulation sensory and motor mapping in 16 pediatric patients aged 3.1 to 18.6 years. All had medically refractory epilepsy that required invasive electrographic monitoring and stimulation mapping. The resting state fMRI data were analyzed using a previously trained machine learning classifier that has previously been evaluated in adults. We report comparable functional localization by resting state fMRI compared to stimulation mapping. These results provide strong evidence for the utility of resting state functional imaging in the localization of sensorimotor cortex across a wide range of pediatric patients

    On the role of the corpus callosum in interhemispheric functional connectivity in humans

    Get PDF
    Resting state functional connectivity is defined in terms of temporal correlations between physiologic signals, most commonly studied using functional magnetic resonance imaging. Major features of functional connectivity correspond to structural (axonal) connectivity. However, this relation is not one-to-one. Interhemispheric functional connectivity in relation to the corpus callosum presents a case in point. Specifically, several reports have documented nearly intact interhemispheric functional connectivity in individuals in whom the corpus callosum (the major commissure between the hemispheres) never develops. To investigate this question, we assessed functional connectivity before and after surgical section of the corpus callosum in 22 patients with medically refractory epilepsy. Section of the corpus callosum markedly reduced interhemispheric functional connectivity. This effect was more profound in multimodal associative areas in the frontal and parietal lobe than primary regions of sensorimotor and visual function. Moreover, no evidence of recovery was observed in a limited sample in which multiyear, longitudinal follow-up was obtained. Comparison of partial vs. complete callosotomy revealed several effects implying the existence of polysynaptic functional connectivity between remote brain regions. Thus, our results demonstrate that callosal as well as extracallosal anatomical connections play a role in the maintenance of interhemispheric functional connectivity

    Disruption of mesoderm formation during cardiac differentiation due to developmental exposure to 13-cis-retinoic acid.

    Get PDF
    13-cis-retinoic acid (isotretinoin, INN) is an oral pharmaceutical drug used for the treatment of skin acne, and is also a known teratogen. In this study, the molecular mechanisms underlying INN-induced developmental toxicity during early cardiac differentiation were investigated using both human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs). Pre-exposure of hiPSCs and hESCs to a sublethal concentration of INN did not influence cell proliferation and pluripotency. However, mesodermal differentiation was disrupted when INN was included in the medium during differentiation. Transcriptomic profiling by RNA-seq revealed that INN exposure leads to aberrant expression of genes involved in several signaling pathways that control early mesoderm differentiation, such as TGF-beta signaling. In addition, genome-wide chromatin accessibility profiling by ATAC-seq suggested that INN-exposure leads to enhanced DNA-binding of specific transcription factors (TFs), including HNF1B, SOX10 and NFIC, often in close spatial proximity to genes that are dysregulated in response to INN treatment. Altogether, these results identify potential molecular mechanisms underlying INN-induced perturbation during mesodermal differentiation in the context of cardiac development. This study further highlights the utility of human stem cells as an alternative system for investigating congenital diseases of newborns that arise as a result of maternal drug exposure during pregnancy

    Clustering of resting state networks

    Get PDF
    BACKGROUND: The goal of the study was to demonstrate a hierarchical structure of resting state activity in the healthy brain using a data-driven clustering algorithm. METHODOLOGY/PRINCIPAL FINDINGS: The fuzzy-c-means clustering algorithm was applied to resting state fMRI data in cortical and subcortical gray matter from two groups acquired separately, one of 17 healthy individuals and the second of 21 healthy individuals. Different numbers of clusters and different starting conditions were used. A cluster dispersion measure determined the optimal numbers of clusters. An inner product metric provided a measure of similarity between different clusters. The two cluster result found the task-negative and task-positive systems. The cluster dispersion measure was minimized with seven and eleven clusters. Each of the clusters in the seven and eleven cluster result was associated with either the task-negative or task-positive system. Applying the algorithm to find seven clusters recovered previously described resting state networks, including the default mode network, frontoparietal control network, ventral and dorsal attention networks, somatomotor, visual, and language networks. The language and ventral attention networks had significant subcortical involvement. This parcellation was consistently found in a large majority of algorithm runs under different conditions and was robust to different methods of initialization. CONCLUSIONS/SIGNIFICANCE: The clustering of resting state activity using different optimal numbers of clusters identified resting state networks comparable to previously obtained results. This work reinforces the observation that resting state networks are hierarchically organized

    Commissioning, clinical implementation, and initial experience with a new brain tumor treatment package on a low-field MR-linac

    Get PDF
    To evaluate the image quality, dosimetric properties, setup reproducibility, and planar cine motion detection of a high-resolution brain coil and integrated stereotactic brain immobilization system that constitute a new brain treatment package (BTP) on a low-field magnetic resonance imaging (MRI) linear accelerator (MR-linac). Image quality of the high-resolution brain coil was evaluated with the 17 cm diameter spherical phantom and the American College of Radiology (ACR) Large MRI Phantom. Patient imaging studies approved by the institutional review board (IRB) assisted in selecting image acquisition parameters. Radiographic and dosimetric evaluation of the high-resolution brain coil and the associated immobilization devices was performed using dose calculations and ion chamber measurements. End-to-end testing was performed simulating a cranial lesion in a phantom. Inter-fraction setup variability and motion detection tests were evaluated on four healthy volunteers. Inter-fraction variability was assessed based on three repeat setups for each volunteer. Motion detection was evaluated using three-plane (axial, coronal, and sagittal) MR-cine imaging sessions, where volunteers were asked to perform a set of specific motions. The images were post-processed and evaluated using an in-house program. Contrast resolution of the high-resolution brain coil is superior to the head/neck and torso coils. The BTP receiver coils have an average HU value of 525 HU. The most significant radiation attenuation (3.14%) of the BTP, occurs through the lateral portion of the overlay board where the high-precision lateral-profile mask clips attach to the overlay. The greatest inter-fraction setup variability occurred in the pitch (average 1.08 degree) and translationally in the superior/inferior direction (average 4.88 mm). Three plane cine imaging with the BTP was able to detect large and small motions. Small voluntary motions, sub-millimeter in magnitude (maximum 0.9 mm), from motion of external limbs were detected. Imaging tests, inter-fraction setup variability, attenuation, and end-to-end measurements were quantified and performed for the BTP. Results demonstrate better contrast resolution and low contrast detectability that allows for better visualization of soft tissue anatomical changes relative to head/neck and torso coil systems

    Distinct cortical and striatal actions of a β-arrestin-biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties.

    Get PDF
    The current dopamine (DA) hypothesis of schizophrenia postulates striatal hyperdopaminergia and cortical hypodopaminergia. Although partial agonists at DA D2 receptors (D2Rs), like aripiprazole, were developed to simultaneously target both phenomena, they do not effectively improve cortical dysfunction. In this study, we investigate the potential for newly developed β-arrestin2 (βarr2)-biased D2R partial agonists to simultaneously target hyper- and hypodopaminergia. Using neuron-specific βarr2-KO mice, we show that the antipsychotic-like effects of a βarr2-biased D2R ligand are driven through both striatal antagonism and cortical agonism of D2R-βarr2 signaling. Furthermore, βarr2-biased D2R agonism enhances firing of cortical fast-spiking interneurons. This enhanced cortical agonism of the biased ligand can be attributed to a lack of G-protein signaling and elevated expression of βarr2 and G protein-coupled receptor (GPCR) kinase 2 in the cortex versus the striatum. Therefore, we propose that βarr2-biased D2R ligands that exert region-selective actions could provide a path to develop more effective antipsychotic therapies
    • …
    corecore