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A B S T R A C T

Localizing neurologic function within the brain remains a significant challenge in clinical neurosurgery. Invasive
mapping with direct electrocortical stimulation currently is the clinical gold standard but is impractical in young
or cognitively delayed patients who are unable to reliably perform tasks. Resting state functional magnetic
resonance imaging non-invasively identifies resting state networks without the need for task performance,
hence, is well suited to pediatric patients. We compared sensorimotor network localization by resting state fMRI
to cortical stimulation sensory and motor mapping in 16 pediatric patients aged 3.1 to 18.6 years. All had
medically refractory epilepsy that required invasive electrographic monitoring and stimulation mapping. The
resting state fMRI data were analyzed using a previously trained machine learning classifier that has previously
been evaluated in adults. We report comparable functional localization by resting state fMRI compared to sti-
mulation mapping. These results provide strong evidence for the utility of resting state functional imaging in the
localization of sensorimotor cortex across a wide range of pediatric patients.

1. Introduction

Mapping eloquent cortex is a common neurosurgical procedure in-
tended to maximize preservation of function. Several mapping mod-
alities exist, but most require invasive diagnostic testing and carry non-
trivial risks. The clinical gold standard for functional mapping currently
is direct electrical cortical stimulation (ECS) to elicit action or tem-
porarily disrupt function. ECS can be performed intra-operatively using
a stimulation probe, or extra-operatively after implantation of electro-
corticography (ECoG) surface electrodes. Intra-operative mapping re-
quires awake surgery in the case of language mapping, but may op-
tionally be performed in anesthetized patients for motor mapping.

ECS carries non-trivial risks associated with staged craniotomy in
the extra-operative setting, the first stage of which is entirely for di-
agnostic purposes. Moreover, ECS carries risk of inducing a seizure
which can limit adequate diagnostic mapping (Szelenyi et al., 2007).
Awake craniotomy is impractical in pediatric patients too young to
participate in the awake portion of the procedure. Inability to follow
commands and cooperate with the anesthesiologist may lead not only to
inadequate mapping, but also significant risk of airway compromise.
For these reasons, awake craniotomy in the pediatric population is
feasible only in carefully selected, high performing individuals. Asleep
intraoperative mapping techniques can also be limited due to the
normal neurophysiology of the developing brain in very young patients.
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Specifically, transcortical motor evoked potentials (MEPs) are sig-
nificantly less reliable at ages< 5 years (Motomura et al., 2018).

Extra-operative mapping is an alternative that can be achieved in a
staged fashion after surgical implantation of ECoG electrodes. The risk
of seizure induction remains, but the risks of airway compromise are
eliminated. However, this option necessitates two general anesthesia
procedures, one for implant and one for explant and possible inter-
vention. The advantage of this paradigm is that extra-operative map-
ping can be performed in the relative comfort of the patient's bedside
where the potential for adequate participation is maximized.

Magnetic resonance imaging (MRI) is a non-invasive method for
achieving functional localization. Task based fMRI (t-fMRI) is the tra-
ditional technique wherein alternating task and rest epochs induce a
functional response. Although it is non-invasive, t-fMRI depends on
adequate patient participation, as does awake stimulation mapping, be
it intra-operative or at the bedside.

Resting state fMRI (r-fMRI) is an emerging technique for pre-sur-
gical functional localization that does not depend on subject coopera-
tion with task performance, yet can quickly generate functional maps of
the whole brain in individual patients (Hacker et al., 2013). Ad-
ditionally, r-fMRI can be obtained in both awake and sedated patients,
for those unable to tolerate the MRI scanner environment, e.g., owing to
claustrophobia. Resting state fMRI has been extensively used in basic
and clinical neuroscience research (Leuthardt et al., 2018; Rosazza
et al., 2014, 2018; Snyder, 2015). Such studies historically have focused
largely on group-level differences between study and control popula-
tions, but more recently have obtained meaningful results at the single
subject level (Gordon et al., 2017; Hacker et al., 2013; Laumann et al.,
2015).

To achieve single subject level r-fMRI analysis, we chose to use a
previously reported machine learning approach to mapping individual
subject networks (Hacker et al., 2013). This technique applies a clas-
sical artificial neural network known as the multilayer perceptron
(MLP) for classification of 7 canonical RSNs. Previous applications of
this method have been reported comparing adult subjects undergoing
either awake surgery or extra-operative mapping (Mitchell et al., 2013)
as well as a cohort of patients with brain tumors (Dierker et al., 2017).
The output of the MLP is a pseudo-probability score indicating the
likelihood of a given voxel belonging to the respective network. A
simple threshold applied to this output yields a binary RSN map for the
respective network. In this study, we evaluated performance across the
full range of MLP scores as well as a systematically determined
threshold for a binary RSN map. The precise threshold used is relatively
arbitrary, may be cohort specific, and may not translate to other im-
plementations or techniques. Yet, it provides for a consistent measure of
performance across individuals and may be optimized for desired goals
in a clinical setting. This approach also allows for automated processing
such that it may be incorporated in a clinical workflow and integrated
with surgical navigation (Leuthardt et al., 2018).

To advance the field of pre-surgical mapping, we assessed the ability
of r-fMRI to identify the sensorimotor network in pediatric patients and
compared the results to invasive ECS mapping performed at the bedside
after ECoG implantation. Our data show comparable r-fMRI versus in-
vasive stimulation mapping results. These data support r-fMRI as an
adjunct to pre-operative planning, either to focus subsequent invasive
mapping, or potentially as a means of entirely obviating the need for
invasive mapping in appropriately selective cases.

2. Methods

Pediatric patients with medically refractory epilepsy undergoing
ECoG implant for diagnostic mapping were retrospectively identified in
our clinical database. We included patients who had all required data
for this analysis, including pre-operative high-resolution structural
imaging, pre-operative resting state imaging, post-operative imaging
for electrode localization, and bedside stimulation mapping records

that clearly identify sensory and/or motor positive electrode sites. Pre-
and post-operative imaging data were retrieved including pre-operative
MRI and post-operative radiograph and computed tomography (CT).
Patient information was retrieved from clinical records including age,
sex, side of ECoG implant, sedation requirement for pre-operative
imaging, and stimulation mapping notes. Patient selection, surgical
candidacy, and ECoG monitoring plan were all determined per clinical
criteria alone without regard to research considerations.

Surgical procedures were performed in two stages, with ECoG im-
plant in the first stage, followed by bedside mapping, then electrode
explant and possible resection in a planned second stage. The treating
neurosurgeon and epileptologist selected the electrode implant location
to cover the site of suspected seizure onset zone (SOZ) and adjacent
eloquent cortex. ECoG implants consisted of at least one grid and po-
tentially several strips according to an a-priori seizure monitoring plan
tailored to each individual.

We used post-implant CT imaging to localize ECoG implants on
cortical surface. In two individuals treated before adoption of routine
post-op CT imaging, electrodes were localized on the basis of plain skull
radiographs alone. To localize ECoG electrodes we used the iELVis
toolbox (Groppe et al., 2017) and the Bioimage software suite version
3.01 (Joshi et al., 2011) (https://medicine.yale.edu/bioimaging/suite/
). Where only radiographs were available, we used the Location on
Cortex package (Miller et al., 2007).

A significant challenge in localizing ECoG electrodes from post-
implantation imaging is the cerebral deformation induced by fluid shifts
during surgery and mass effect of the implanted electrodes. To take this
effect into account, electrode coordinates from an initial localization
were projected to the cortical surface generated from pre-operative
high-resolution structural MRI. We used FreeSurfer version 5.3 (Dale
et al., 1999; Fischl et al., 2004) for cortical surface reconstruction and
parcellation of the pre-operative MRI. We used the FreeSurfer localGI
option (Schaer et al., 2008) to create a smoothed surface from the pial
surface mesh. We then projected electrode coordinates to the smoothed
surface using the method described by Dykstra et al. (Dykstra et al.,
2012). Briefly, this method employs an energy-minimization algorithm
that includes displacement and deformation terms. The deformation is
quantified by the change in distance between neighboring electrodes
when the respective electrode is projected onto the nearest location of
the smoothed cortical surface.

All patients underwent standard high-resolution structural MRI
studies in the pre-operative planning stages. During this same session,
we also obtained resting state (i.e., task-free) blood oxygen level de-
pendent (BOLD) functional magnetic resonance imaging (fMRI).
Structural imaging included a T1 weighted magnetization prepared
rapid acquisition gradient echo (MP-RAGE) sequence with repetition
time (TR) 2000ms, echo time (TE) 2.5 ms, flip angle 12°, and voxel size
1.0×1.0× 1.0mm, and a T2 weighted turbo-spin echo sequence with
TR 9000ms, TE 115ms, flip angle 120°, and voxel size
1.0×1.0× 2.5mm. The resting state data were collected with echo
planar imaging sequences sensitive to BOLD contrast with TR 2070ms,
TE 25ms, flip angle 90°, and voxel size 4.0×4.0×4.0mm. Two runs
of resting state fMRI were acquired yielding a total of 400 frames over
~14min. All imaging was obtained on a 3 T Siemens Trio scanner.

Several individuals required sedation to tolerate MRI due to young
age and cognitive delays related to their disease process. The treating
anesthesiologist decided the anesthetic agent of choice and technique
for each patient at the time of imaging. All clinical decisions were made
by the respective physician without regard for research interests.

Resting state fMRI data pre-processing followed previously pub-
lished methods using the 4dfp software suite (Shulman et al., 2010)
(https://readthedocs.org/projects/4dfp/). In brief, this included cor-
rection for slice acquisition, normalization of intensity scale to mode
1000, and correction for head motion between frames, and re-sampling
to 3mm cubic voxels. The time series were low-pass filtered at< 0.1 Hz
and spatially smoothed with a 6mm at full-width half-max Gaussian
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kernel. Nuisance variables that were regressed from the signal included
parameters derived by rigid body head motion correction, and the
BOLD signal from the bilateral lateral ventricles, white matter regions
of non-interest, and the global signal. Frame censoring was performed
based on the computed temporal derivative of variance (DVARS) cal-
culated after nuisance regression by the root mean-squared frame-to-
frame signal change across voxels (Power et al., 2012, 2014). Frames
with DVARS>0.5% were excluded from functional connectivity ana-
lyses. Image registration was performed as previously described
(Roland et al., 2017) including registration of T2 weighted images to a
common atlas space and cross-modal registration of T1 and EPI se-
quences to the respective T2 weighted image. We combined all trans-
formation matrices in to a single transformation matrix in order to
perform atlas transformation and motion correction in a single resam-
pling step.

Next, we analyzed the pre-processed resting state data, using a
previously trained, multilayer perceptron (MLP) (Hacker et al., 2013).
The MLP is a machine learning algorithm that assigns resting state
network (RSN) affiliation to every voxel in the brain. Implementation of
the MLP for RSN classification in individual subjects has been pre-
viously described in great detail by Hacker et al. (2013). In brief, the
algorithm was trained on a large seed-based r-fMRI data set where seeds
were selected by meta-analysis of previously published task and resting
state fMRI literature. The trained algorithm then takes in pre-processed
r-fMRI data and assigns a pseudo-probability of RSN membership on a
per voxel basis. The pseudo-probability is a fractional score from 0 to 1
for each RSN. If we assume each voxel belongs to only one RSN, then
network assignment may follow a winner-take-all method where the
RSN with highest score is assigned to the respective voxel. Alter-
natively, an individual voxel can be considered as belonging to more
than one RSN where the score may be interpreted as strength of as-
signment. In our analysis, we used the score for the sensorimotor net-
work (SMN) and a minimum threshold score to assign network mem-
bership. This technique has previously been compared to direct cortical
stimulation mapping in adult neurosurgical patients by Mitchell et al.
(2013).

We performed seed-based analysis for one outlier subject to com-
pare the results with the MLP generated output. We used the sensor-
imotor network seeds described by Hacker et al. to generate an SMN
map for each seed and then projected the mean of these maps to the
surface for display. This was qualitatively compared to the MLP map to
determine if the outlying results were likely present in the acquired
data versus a result of mis-classification by the MLP algorithm.

We performed all imaging analysis in a common image space. This
allowed for subsequent comparison of stimulation mapping results on a
per electrode basis with the nearest underlying voxel and its respective
RSN, as determined by the MLP, and the structural parcellation, as
determined by FreeSurfer. Fig. 1 presents a schematized high-level
overview of the analysis pipeline. After image processing and electrode
localization, we imported all data into Matlab version 2015b for further
analysis (The MathWorks Inc., Natick, MA).

Using stimulation mapping results as the clinical gold standard, we
calculated the true-positive, true-negative, and receiver operating
characteristics (ROC) for each individual at varying thresholds of the
MLP score for the SMN. We calculated the area-under-the-curve (AUC)
and Youden's J statistic for the group mean ROC curve to characterize
performance of r-fMRI in localized sensorimotor cortex. Youden's J is a
statistic that captures performance of a diagnostic test by maximizing
the true-positive and true-negative. We use it to inform our choice of an
MLP threshold for SMN assignment.

We plotted the MLP score for the SMN projected on the cortical
surface of each individual and overlaid the ECoG electrodes color-coded
according to ECS mapping results to visualize this comparison. We also
visualized the SMN maps in volume space binarized at the previously
determined threshold. By combining the group data into a voxel-based
map, we identify areas of common SMN assignment across the group

and display the results over the pediatric 4.5 to 18.5-year-old MNI atlas
symmetric template (Fonov et al., 2011).

Despite ECS being the clinical gold standard, it is subject to error,
which may be exacerbated in pediatric patients with varying partici-
pation levels during the mapping procedure. For this reason, we also
compared the MLP to structural data where sensorimotor function is
expected in the pre-central gyrus, post-central gyrus, and para-central
gyrus as identified by FreeSurfer parcellation. This structural analysis is
similar to that previously reported in adult neurosurgical patients with
cerebral tumors by Dierker et al. (2017). We display the structural
parcellation and thresholded MLP network assignment for each in-
dividual on their respective cortical surfaces as well as the structural
parcellation with overlaid electrodes color-coded by ECS results
(Fig. 2).

We computed the Dice coefficient to quantify the overlap of MLP
network assignment at varying thresholds with the structural parcel-
lation. From these data, we identified the MLP threshold that max-
imized overlap between the two maps. Structural parcellation is less
dependent than ECS on patient participation. Therefore, we compared
the max Dice coefficient with age, in scanner movement, and sedation
status during r-fMRI to identify systematic bias potentially introduced
by these variables. Pearson correlation coefficient and two-sample t-test
were used for statistical analyses (statistical significance defined as
p < .05).

Code for these analyses is available online at https://github.com/
jarodroland/Peds_rfMRI_vs_ECS. We used code from the Violinplot-
Matlab repository available online at https://github.com/bastibe/
Violinplot-Matlab. For each subject we created unthresholded MLP
maps, which are available online at https://neurovault.org/collections/
MBZVNSZY.

3. Results

We identified 16 pediatric patients with data sufficient for the
present analysis (Table 1). Ages ranged from 4.0 to 18.6 years-of-age.
Grids were located on the right side in 7 and the left in 9 patients.
Electrode coverage typically included the lateral convexity with a grid
and additional strips where placed as indicated based on pre-operative
localization. Only those electrodes included in stimulation mapping, as
determined by treating epileptologist on clinical decisions alone, were
included for study. Sedation was required to tolerate the MRI scan in 7

Fig. 1. Methods diagram.
The diagram demonstrates functional imaging analysis proceeding in parallel to
clinical mapping and subsequent convergence of results.
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patients.
In Fig. 2 we show the MLP score for the SMN projected onto each

patient's cortical surface. On the cortical surface we overlaid the ECoG
electrodes used in ECS mapping and color coded them according to
sensory or motor positive (white) or negative (black) results. Visual
comparison suggests a correlation between ECS-positive sites with areas

of strongest MLP score for the SMN. However, several areas of deviation
from expected RSN organization are apparent. For example, some
subjects include strong MLP scores over expected anatomy with middle-
range scores deviating from expections, such as Subject A, E, and F. The
MLP for Subject P is the most notably divergent from expected SMN. To
better define the strong signal correlating to sensorimotor cortex from
weaker signal attributable to noise, we further compared the varying
MLP scores thesholds to the stimulating mapping results.

We then computed the ROC for each individual at varying MLP
thresholds. The ROC curves for each individual are displayed in grey
lines in Fig. 3. The mean curve is displayed in black and its AUC is
shaded grey. The diagonal dashed line represents chance performance.
The AUC for the group data is 0.77, suggesting the MLP is a useful tool
for identifying sensorimotor cortex. Previously reported reference va-
lues describe an AUC of 0.77 as within a “good” (Šimundić, 2008) or
“fair test” (Carter et al., 2016) range. The Youden's J statistic identifies
a threshold of 0.89 as the MLP score that maximizes true-positive and
true-negative results for this group.

Using the threshold identified by ROC analysis, we then combined
the binarized SMN maps from all subjects in volume space to create a
heat-map of sites most frequently included in the SMN for this group. In
Fig. 4, we display this group SMN map at the previously determined
threshold over a pediatric template image. Each voxel included in the
SMN map of> 2 subjects is shaded according to the total number of
subjects whose SMN map included that voxel. This visualization of a
resting state network in volume space is familiar to clinicians and can
be directly imported to the intra-operative navigation system for an

Fig. 2. Individual r-fMRI and ECS mapping.
Each individual's MLP score for the SMN map is projected onto their reconstructed cortical surface. Subjects are organized in row order with Subject A at top left and
Subject P at bottom right. ECoG electrodes are color-coded according to positive (white) or negative (black) ECS results for motor and sensory function.

Table 1
Patient demographics.

Subject Age Sex Grid side Sedated Age onset

A 4.0 F Right Yes 18mos
B 9.5 M Right No 8 yrs
C 12.9 M Left No 8 yrs
D 13.4 M Right Yes 7 yrs
E 4.8 M Left Yes 15mos
F 12.4 F Left No 4 yrs
G 7.3 M Right Yes 10mos
H 3.1 M Right Yes 4mos
I 12.1 F Right No 1 yr
J 13.6 F Left No 9 yrs
K 18.6 M Left No 9 yrs
L 11.9 F Right No 5 yrs
M 13.9 M Left No 3 yrs
N 9.1 M Left Yes 5 yrs
O 17.5 F Left No 8 yrs
P 15.0 F Left Yes 2 yrs

16 individuals for which r-fMRI and ECS mapping were performed prior to
neurosurgical intervention for refractory epilepsy. Age in years.
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individual subject.
We then displayed the thresholded SMN maps on the cortical sur-

face of each individual in Fig. 5, similar that of the un-threshold data in
Fig. 2. In addition, we also displayed the structural parcellation of the
pre-central, post-central, and para-central gyrus on the same surface.
The SMN map is displayed in red, the structural parcellation in blue,
and surface area where the two maps overlap is displayed in green. We
then computed the sensitivity and specificity of the functional to ana-
tomic localization across the entire cortical surface. If we assume the
anatomic localization to be the ground truth, then the true-positive
areas are green, where both anatomic and functional data co-localize,
true-negative areas are grey, where neither are present, false-positive
areas are red, where the SMN localizes to areas outside of Rolandic
cortex, and false-negative areas are blue, where Rolandic cortex is lo-
calized but the SMN is not. We computed these statistics for each
subject and found a mean sensitivity of 0.51 and specificity of 0.93. The
distribution is displayed in violin plots in Supplemental Fig. S1. In Fig. 6

we show the anatomic parcellation with the addition of the electrode
coordinates color coded according to ECS results for motor or sensory
stimulation positive in white and negative in black.

Of note, Subject P was found to have a very abnormal SMN map as
determined by the MLP. We therefore displayed the results of a seed-
based analysis in Supplemental Fig. S2 to determine if the source of
error reside in the BOLD data or as a result of erroneous classification
by the MLP. The seed-based functional map has a similar topography to
the MLP determined SMN. This suggests the mis-match with the sti-
mulation mapping is a result of the underlying BOLD data.

The comparison between SMN maps at varying thresholds and the
structural parcellation are quantified in Fig. 7 via the Dice overlap
coefficient. The curve for each individual is plotted in grey and the
mean group data is plotted in black (Fig. 7A). The MLP score that
provided the greatest overlap between the SMN map and structural
parcellation, as measured by maximum Dice coefficient, is identified by
an open circle on each individual's curve. The max Dice coefficient for
each individual is correlated to the patient's age (Fig. 7B) and amount of
inter-frame movement (Power et al., 2012, 2014) during the r-fMRI
scan (Fib 7C). We found no significant relationship with max Dice for
age (r2= 0.15, p= .14) or movement (r2= 0.002, p= .858). Similarly,
we compared the max Dice coefficient for individuals requiring seda-
tion to non-sedated (Fig. 7D) and also found no significant difference.

4. Discussion

Here we demonstrate the r-fMRI for mapping the SMN in a wide age
range of pediatric patients who underwent cortical stimulation map-
ping of sensory and motor cortex. These results show good agreement
between the MLP and stimulation mapping, as demonstrated by sub-
jective visual impression in combined plots over the brain surface
(Fig. 2) and quantitatively in the ROC analysis (Fig. 3).

Imperfect agreement is partly attributable to uncertainties asso-
ciated with stimulation mapping (Mandonnet et al., 2010). False-posi-
tive ECS results may occur through cortical spread of electrical current
leading to activation of distant cortical areas and false localization of
function (Borchers et al., 2012). The mechanism may be volume con-
duction to adjacent areas (Suh et al., 2006) or activity propagation via
white matter tracts to distant sites (Ishitobi et al., 2000; Matsumoto
et al., 2006). These effects are tempered in practice by starting with a
low stimulation current, often 1mA, and increasing in a step-wise
manner until the desired effect is elicited or after-discharges are ob-
served. A step-wise search for current threshold repeated at each site

Fig. 3. ROC analysis.
ROC across a range of thresholds for the r-fMRI analysis for each subject shown
in light grey and the mean in bold black. AUC for the mean ROC curve is shaded
in grey. Youden's J statistic identified with red dash-dot line. Chance perfor-
mance marked with dashed black diagonal line.

Fig. 4. Group SMN maps.
The SMN maps after threshold applied are plotted on a pediatric representative T1-weighted atlas. Color indicates voxels where the SMN mapped to for> 2
individuals and shows areas of common network localization. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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can be very time consuming due to the wide range of stimulation re-
sponse thresholds even within an individual (Corley et al., 2017); an
effect may not be elicited until high stimulation current, such as 10mA
or higher. A high threshold may simply be the current necessary at the
specific site, or could be the point at which a distant site is activated via
current spread leading to a false-positive result.

Beyond the biophysical complexities of ECS, stimulation mapping
can be difficult to interpret in pediatric patients. Stringent cooperation
during mapping is required so that spontaneous movements are not
mis-interpreted as being stimulation induced. Similarly, somatosensory
mapping results are dependent on the patient's self-reporting of per-
ceived sensory stimuli. Such reporting may be limited by an individual's
level of cognitive development. Therefore, a mapping procedure that is
less demanding of a patient's cooperation is uniquely advantageous in
pediatric patients.

Other mapping techniques are available and have associated ad-
vantages and disadvantages. For young or cognitively immature pa-
tients who require sedation to tolerate the MRI environment, passive
movement can be performed in a block-paradigm task fMRI study (Ogg
et al., 2009). This can be achieved, for example, by a practitioner
moving the subject's arm alternating with rest epochs similar to the
actions taken by an awake participating subject. The main disadvantage
of this technique is the additional personel required to assist with
passive motion, but does have the benefit of being non-invasive. Mag-
netoencephalography (MEG) is an alternative method for functional
imaging and can similarly take advantage of passive mapping through
the technique of median nerve stimulation during data acquisition

(Korvenoja et al., 2006). Unfortunately, MEG is less commonly avail-
able compared to MRI and requires additional processing to co-register
the data to a familiar imaging space. If the patient is already undergoing
craniotomy, then additional passive mapping techniques are available
such as median nerve stimulation with simultaneous ECoG monitoring
of SSEP phase reversal for localizing the central sulcus (Wood et al.,
1988) or slow cortical potential mapping at rest (Breshears et al., 2012).
This is necessarily invasive and is not helpful in the pre-operative
planning stage.

Given the complexities with ECS mapping mentioned above, we also
compared r-fMRI with structural parcellations of sensorimotor cortex,
assuming that primary motor and sensory areas localize to the pre-
central, post-central, and para-central gyri. This is possible because the
patients in our cohort did not have any mass lesions that distort their
anatomy and therefore a close structural and functional relationship is
reasonable, particularly in the sensorimotor system. Such a comparison
would not be feasible for the language network, where the structure-
function relationship is more variable.

Resting state fMRI research is a growing at a rapid pace (Snyder,
2015). One of the ongoing challenges regards a robust and accurate
analysis methodology, the details of which are beyond the scope of this
discussion (for recent review see (Silva et al., 2018)). However, certain
methodological traits are relevant to clinical translation. Two canonical
methodologies for performing resting state analysis are seed based
correlations and independent component analysis (ICA). Seed based
correlations require the accurate placement of a seed in an a priori
determined functional area in order to discover the extent of the

Fig. 5. Functional and anatomic mapping.
Thresholded r-fMRI maps of the SMN are projected onto each individual's cortical surface in red. Anatomic labeling is shown in blue. Common areas where the two
maps overlap is shown in green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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respective RSN. Seed coordinates are commonly published in the lit-
erature and may be used in individuals with normal anatomy. However,
the assumption of normal anatomy and typical RSN organization may
not hold in many clinical scenarios (Roland et al., 2013). ICA based
techniques seek to overcome this limitation by discovering networks in
a data driven approach. A trade-off to this approach is that resultant
networks must then be labeled by an expert reviewer to identify the
RSN of interest. Approaches to match networks discovered by ICA to
standard RSN patterns have been reported (Lu et al., 2017; Tie et al.,
2014; Zacà et al., 2018), but this procedure re-introduces the assump-
tion of normal RSN organization. Yet another reported alternative be-
gins with a standardized population atlas that is iteratively adapted to
the individual subject's data (Wang et al., 2015).

Most individuals in this cohort had similar overlap between r-fMRI,
anatomic localization, and stimulation mapping as shown in Fig. 7,
with Subject P being the greatest outlier. As previously discussed, the
ability of individuals to cooperate is a potential confounding factor that
could produce erroneous results. To this end, we compared age,
movement during r-fMRI scans, and requirements for sedation to the
overlap between the SMN and anatomic localization. None of these
variables revealed a significant correlation (Fig. 7B, C, D). Notably, the
greatest outlier (Subject P) was not exceptionally young (age 15 yrs)
and demonstrated very little motion during r-fMRI (likely attributable
to use of sedation). Yet, r-fMRI did not produce a reliable SMN map for
this individual, indicating the procedure is not without failure. Despite
this, the results were obtained through no effort of the patient and
without introducing additional risk. Therefore, despite an un-
satisfactory result, it was obtained with little to no cost and all fall back
methods for mapping remain available to the neurosurgeon.

This study did have limitations that should be considered when
interpreting the results. First, this is a retrospective analysis of pre-
viously collected data. Because subject selection is determined entirely
by clinical indication and not standardized to a research protocol, the
effects of individual traits that could not be controlled for could in-
troduce bias. These effects are common to all retrospective studies. We
attempted to identify correlations to certain attributes such as age,
movement in the scanner, and requirements for sedation (Fig. 7B–D),
but did not detect any such relationship. Our cohort is a relatively small
size (16 patients) compared to other larger functional imaging studies.
This is due to the highly invasive nature of intracranial electrode re-
cordings in pediatric patients and compares favorably to similar ECoG
studies (Mitchell et al., 2013; Rosazza et al., 2014; Zacà et al., 2018;
Zhang et al., 2009).

The MLP method we used for r-fMRI analysis classified RSNs to one
of seven previously described networks. However, a multitude of net-
work schemes have been described and are varyingly used in the lit-
erature. Of particular importance are subnetworks within the SMN.
Some RSN parcellations further divide the SMN in to hand (dorsal) and
face (ventral) components (Power et al., 2011). There is also a com-
ponent of the SMN in the operculum and insula that may be attributed
to a cinguloopercular network or auditory network in some parcella-
tions (Lee et al., 2012; Power et al., 2011). Therefore, the particular
RSN parcellation, and the method for assigning membership to an RSN,
may affect the resultant sensitivity and specificity of r-fMRI for iden-
tifying sensorimotor cortex. Other authors have similarly investigated
methods for automated (Dierker et al., 2017; Lu et al., 2017; Mitchell
et al., 2013; Zacà et al., 2018) and semi-automated (Tie et al., 2014)
RSN analysis for clinical planning in various patient populations.

Fig. 6. Anatomic map and ECS results.
Anatomic map of pre-central, post-central, and para-central gyri is shown in blue. ECoG electrodes are overlaid and color-coded for positive (white) and negative
(black) ECS motor mapping results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Convergence of methods to a common approach that is thoroughly
investigated in the clinical setting will likely optimize this technique in
the future.

5. Conclusion

These data provide encouraging results suggesting the feasibility of
r-fMRI as a non-invasive adjunct for clinical brain mapping. There are
few systematic evaluations of r-fMRI mapping compared to the clinical
gold standard of ECS in the literature. Furthermore, despite resting state
fMRI being uniquely advantageous in pediatric patients, the majority of
reported studies are performed in adult age subjects. These results de-
monstrate comparable results between r-fMRI and ECS mapping across
a wide range of pediatric patients, include sedated and non-sedated,
and provide strong support for the successful translation of r-fMRI to
clinical practice.
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