3,080 research outputs found

    Differential nuclear localization of complexes may underlie in vivo intrabody efficacy in Huntington's disease.

    Get PDF
    Intrabodies offer attractive options for manipulating the protein misfolding that triggers neurodegenerative diseases. In Huntington's disease, where the expanded polyglutamine tract in the extreme N-terminal region of huntingtin exon1 misfolds, two lead intrabodies have been selected against an adjacent peptide, using slightly different approaches. Both are effective at preventing aggregation of a reporter fragment in transient co-transfection assays. However, after intracranial delivery to mutant mouse brains, VL12.3, which is mainly localized to the nucleus, appears to accelerate the mutant phenotype, while C4 scFv, which is largely cytoplasmic, shows partial phenotypic correction. This comparison highlights parameters that could inform intrabody therapeutics for multiple proteostatic diseases.This is the final published version. It's also available from OUP at http://peds.oxfordjournals.org/content/27/10/359.full.html

    The conformations of Discodermolide in DMSO

    Get PDF

    Evaluating Acquisition Time of rfMRI in the Human Connectome Project for Early Psychosis. How Much Is Enough?

    Get PDF
    Resting-state functional MRI (rfMRI) correlates activity across brain regions to identify functional connectivity networks. The Human Connectome Project (HCP) for Early Psychosis has adopted the protocol of the HCP Lifespan Project, which collects 20 min of rfMRI data. However, because it is difficult for psychotic patients to remain in the scanner for long durations, we investigate here the reliability of collecting less than 20 min of rfMRI data. Varying durations of data were taken from the full datasets of 11 subjects. Correlation matrices derived from varying amounts of data were compared using the Bhattacharyya distance, and the reliability of functional network ranks was assessed using the Friedman test. We found that correlation matrix reliability improves steeply with longer windows of data up to 11–12 min, and ≥14 min of data produces correlation matrices within the variability of those produced by 18 min of data. The reliability of network connectivity rank increases with increasing durations of data, and qualitatively similar connectivity ranks for ≥10 min of data indicates that 10 min of data can still capture robust information about network connectivities

    Does a SLAP lesion affect shoulder muscle recruitment as measured by EMG activity during a rugby tackle?

    Get PDF
    Background: The study objective was to assess the influence of a SLAP lesion on onset of EMG activity in shoulder muscles during a front on rugby football tackle within professional rugby players. Methods: Mixed cross-sectional study evaluating between and within group differences in EMG onset times. Testing was carried out within the physiotherapy department of a university sports medicine clinic. The test group consisted of 7 players with clinically diagnosed SLAP lesions, later verified on arthroscopy. The reference group consisted of 15 uninjured and full time professional rugby players from within the same playing squad. Controlled tackles were performed against a tackle dummy. Onset of EMG activity was assessed from surface EMG of Pectorialis Major, Biceps Brachii, Latissimus Dorsi, Serratus Anterior and Infraspinatus muscles relative to time of impact. Analysis of differences in activation timing between muscles and limbs (injured versus non-injured side and non injured side versus matched reference group). Results: Serratus Anterior was activated prior to all other muscles in all (P = 0.001-0.03) subjects. In the SLAP injured shoulder Biceps was activated later than in the non-injured side. Onset times of all muscles of the noninjured shoulder in the injured player were consistently earlier compared with the reference group. Whereas, within the injured shoulder, all muscle activation timings were later than in the reference group. Conclusions: This study shows that in shoulders with a SLAP lesion there is a trend towards delay in activation time of Biceps and other muscles with the exception of an associated earlier onset of activation of Serratus anterior, possibly due to a coping strategy to protect glenohumeral stability and thoraco-scapular stability. This trend was not statistically significant in all cases

    Developing a digital intervention for cancer survivors: an evidence-, theory- and person-based approach

    Get PDF
    This paper illustrates a rigorous approach to developing digital interventions using an evidence-, theory- and person-based approach. Intervention planning included a rapid scoping review which identified cancer survivors’ needs, including barriers and facilitators to intervention success. Review evidence (N=49 papers) informed the intervention’s Guiding Principles, theory-based behavioural analysis and logic model. The intervention was optimised based on feedback on a prototype intervention through interviews (N=96) with cancer survivors and focus groups with NHS staff and cancer charity workers (N=31). Interviews with cancer survivors highlighted barriers to engagement, such as concerns about physical activity worsening fatigue. Focus groups highlighted concerns about support appointment length and how to support distressed participants. Feedback informed intervention modifications, to maximise acceptability, feasibility and likelihood of behaviour change. Our systematic method for understanding user views enabled us to anticipate and address important barriers to engagement. This methodology may be useful to others developing digital interventions

    Common variants of the beta and gamma subunits of the epithelial sodium channel and their relation to plasma renin and aldosterone levels in essential hypertension

    Get PDF
    BACKGROUND: Rare mutations of the epithelial sodium channel (ENaC) result in the monogenic hypertension form of Liddle's syndrome. We decided to screen for common variants in the ENaC βand γ subunits in patients with essential hypertension and to relate their occurrence to the activity of circulating renin-angiotensin-aldosterone system. METHODS: Initially, DNA samples from 27 patients with low renin/low aldosterone hypertension were examined. The DNA variants were subsequently screened for in 347 patients with treatment-resistant hypertension, 175 male subjects with documented long-lasting normotension and 301 healthy Plasma renin and aldosterone levels were measured under baseline conditions and during postural and captopril challenge tests. RESULTS: Two commonly occurring βENaC variants (G589S and a novel intronic i12-17CT substitution) and one novel γENaC variant (V546I) were detected. One of these variants occurred in a heterozygous form in 32 patients, a prevalence (9.2%) significantly higher than that in normotensive males (2.9%, p = 0.007) and blood donors (3.0%, p = 0.001). βENaC i12-17CT was significantly more prevalent in the hypertension group than in the two control groups combined (4.6% vs. 1.1%, p = 0.001). When expressed in Xenopus oocytes, neither of the two ENaC amino acid-changing variants showed a significant difference in activity compared with ENaC wild-type. No direct evidence for a mRNA splicing defect could be obtained for the βENaC intronic variant. The ratio of daily urinary potassium excretion to upright and mean (of supine and upright values) plasma renin activity was higher in variant allele carriers than in non-carriers (p = 0.034 and p = 0.048). CONCLUSIONS: At least 9% of Finnish patients with hypertension admitted to a specialized center carry genetic variants of β and γENaC, a three times higher prevalence than in the normotensive individuals or in random healthy controls. Patients with the variant alleles showed an increased urinary potassium excretion rate in relation to their renin levels

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Herpes Simplex Virus Dances with Amyloid Precursor Protein while Exiting the Cell

    Get PDF
    Herpes simplex type 1 (HSV1) replicates in epithelial cells and secondarily enters local sensory neuronal processes, traveling retrograde to the neuronal nucleus to enter latency. Upon reawakening newly synthesized viral particles travel anterograde back to the epithelial cells of the lip, causing the recurrent cold sore. HSV1 co-purifies with amyloid precursor protein (APP), a cellular transmembrane glycoprotein and receptor for anterograde transport machinery that when proteolyzed produces A-beta, the major component of senile plaques. Here we focus on transport inside epithelial cells of newly synthesized virus during its transit to the cell surface. We hypothesize that HSV1 recruits cellular APP during transport. We explore this with quantitative immuno-fluorescence, immuno-gold electron-microscopy and live cell confocal imaging. After synchronous infection most nascent VP26-GFP-labeled viral particles in the cytoplasm co-localize with APP (72.8+/−6.7%) and travel together with APP inside living cells (81.1+/−28.9%). This interaction has functional consequences: HSV1 infection decreases the average velocity of APP particles (from 1.1+/−0.2 to 0.3+/−0.1 µm/s) and results in APP mal-distribution in infected cells, while interplay with APP-particles increases the frequency (from 10% to 81% motile) and velocity (from 0.3+/−0.1 to 0.4+/−0.1 µm/s) of VP26-GFP transport. In cells infected with HSV1 lacking the viral Fc receptor, gE, an envelope glycoprotein also involved in viral axonal transport, APP-capsid interactions are preserved while the distribution and dynamics of dual-label particles differ from wild-type by both immuno-fluorescence and live imaging. Knock-down of APP with siRNA eliminates APP staining, confirming specificity. Our results indicate that most intracellular HSV1 particles undergo frequent dynamic interplay with APP in a manner that facilitates viral transport and interferes with normal APP transport and distribution. Such dynamic interactions between APP and HSV1 suggest a mechanistic basis for the observed clinical relationship between HSV1 seropositivity and risk of Alzheimer's disease
    corecore