143 research outputs found

    The Impact of Aerobic Exercise on the Muscle Stem Cell Response

    Get PDF
    Satellite cells are indispensable for skeletal muscle repair and regeneration and are associated with muscle growth in humans. Aerobic exercise training results in improved skeletal muscle health also translating to an increase in satellite cell pool activation. We postulate that aerobic exercise improves satellite cell function in skeletal muscle

    A multi-ingredient nutritional supplement enhances exercise training-related reductions in markers of systemic inflammation in healthy older men

    Get PDF
    We evaluated whether twice daily consumption of a multi-ingredient nutritional supplement (SUPP) would reduce systemic inflammatory markers following 6wk of supplementation alone (Phase 1), and the subsequent addition of 12wk exercise training (Phase 2) in healthy older men, in comparison to a carbohydrate-based control (CON). Tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) concentrations were progressively reduced (P-time<0.05) SUPP group. No change in TNF-α or IL-6 concentrations was observed in the CON group

    Exercise conditioning in old mice improves skeletal muscle regeneration

    Get PDF
    Skeletal muscle possesses the ability to regenerate after injury, but this ability is impaired or delayed with aging. Regardless of age, muscle retains the ability to positively respond to stimuli, such as exercise. We examined whether exercise is able to improve regenerative response in skeletal muscle of aged mice. Twenty‐two‐month‐old male C57Bl/6J mice (n = 20) underwent an 8‐wk progressive exercise training protocol [old exercised (O‐Ex) group]. An old sedentary (O‐Sed) and a sedentary young control (Y‐Ctl) group were included. Animals were subjected to injections of cardiotoxin into the tibialis anterior muscle. The tibialis anterior were harvested before [O‐Ex/O‐Sed/ Y‐Ctl control (CTL); n = 6], 10 d (O‐Ex/O‐Sed/Y‐Ctl d 10; n = 8), and 28 d (O‐Ex/O‐Sed/Y‐Ctl d 28; n = 6) postinjection. Average fiber cross‐sectional area was reduced in all groups at d 10 (CTL: O‐Ex: 2499 ± 140; O‐Sed: 2320 ± 165; Y‐Ctl: 2474 ± 269; d 10: O‐Ex: 1191 ± 100; O‐Sed: 1125 ± 99; Y‐Ctl: 1481 ± 167 μm2; P 0.05). Satellite cell content was greater at CTL in O‐Ex (2.6 ± 0.4 satellite cells/100 fibers) compared with O‐Sed (1.0 ± 0.1% satellite cells/100 fibers; P < 0.05). Exercise conditioning appears to improve ability of skeletal muscle to regenerate after injury in aged mice.—Joanisse, S., Nederveen, J. P., Baker, J. M., Snijders, T., Iacono, C., Parise, G. Exercise conditioning in old mice improves skeletal muscle regeneration. FASEB J. 30, 3256–3268 (2016)

    Skeletal muscle satellite cells are located at a closer proximity to capillaries in healthy young compared with older men

    Get PDF
    Background Skeletal muscle satellite cells (SC) are instrumental in maintenance of muscle fibres, the adaptive responses to exercise, and there is an age‐related decline in SC. A spatial relationship exists between SC and muscle fibre capillaries. In the present study, we aimed to investigate whether chronologic age has an impact on the spatial relationship between SC and muscle fibre capillaries. Secondly, we determined whether this spatial relationship changes in response to a single session of resistance exercise. Methods Muscle biopsies were obtained from the vastus lateralis of previously untrained young men (YM, 24 ± 3 years; n = 23) and older men (OM, 67 ± 4 years; n = 22) at rest. A subset of YM (n = 9) performed a single bout of resistance exercise, where additional muscle biopsies taken at 24 and 72 h post‐exercise recovery. Skeletal muscle fibre capillarization, SC content, and activation status were assessed using immunofluorescent microscopy of muscle cross sections. Results Type II muscle fibre SC and capillary content was significantly lower in the YM compared with OM (P < 0.05). Furthermore, type II muscle fibre SC were located at a greater distance from the nearest capillary in OM compared with YM (21.6 ± 1.3 vs. 17.0 ± 0.8 µm, respectively; P < 0.05). In response to a single bout of exercise, we observed a significant increase in SC number and activation status (P < 0.05). In addition, activated vs. quiescent SC were situated closer (P < 0.05) to capillaries. Conclusions We demonstrate that there is a greater distance between capillaries and type II fibre‐associated SC in OM as compared with YM. Furthermore, quiescent SC are located significantly further away from capillaries than active SC after single bout of exercise. Our data have implications for how muscle adapts to exercise and how aging may affect such adaptations

    Brain-derived neurotrophic factor is associated with human muscle satellite cell differentiation in response to muscle-damaging exercise

    Get PDF
    Muscle satellite cell (SC) regulation is a complex process involving many key signalling molecules. Recently, the neurotrophin brain-derived neurotropic factor (BDNF) has implicated in SC regulation in animals. To date, little is known regarding the role of BDNF in human SC function in vivo. Twenty-nine males (age, 21 ± 0.5 years) participated in the study. Muscle biopsies from the thigh were obtained prior to a bout of 300 maximal eccentric contractions (Pre), and at 6 h, 24 h, 72 h, and 96 h postexercise. BDNF was not detected in any quiescent (Pax7+/MyoD−) SCs across the time-course. BDNF colocalized to 39% ± 5% of proliferating (Pax7+/MyoD+) cells at Pre, which increased to 84% ± 3% by 96 h (P < 0.05). BDNF was only detected in 13% ± 5% of differentiating (Pax7−/MyoD+) cells at Pre, which increased to 67% ± 4% by 96 h (P < 0.05). The number of myogenin+ cells increased 95% from Pre (1.6 ± 0.2 cells/100 myofibres (MF)) at 24 h (3.1 ± 0.3 cells/100 MF) and remained elevated until 96 h (cells/100 MF), P < 0.05. The proportion of BDNF+/myogenin+ cells was 26% ± 0.3% at Pre, peaking at 24 h (49% ± 3%, P < 0.05) and remained elevated at 96 h (P < 0.05). These data are the first to demonstrate an association between SC proliferation and differentiation and BDNF expression in humans in vivo, with BDNF colocalization to SCs increasing during the later stages of proliferation and early differentiation

    Potato protein ingestion increases muscle protein synthesis rates at rest and during recovery from exercise in humans

    Get PDF
    Introduction Plant-derived proteins have received considerable attention as an alternative to animal-based proteins and are now frequently used in both plant-based diets and sports nutrition products. However, little information is available on the anabolic properties of potato-derived protein. This study compares muscle protein synthesis rates after the ingestion of 30 g potato protein versus 30 g milk protein at rest and during recovery from a single bout of resistance exercise in healthy, young males. Methods In a randomized, double-blind, parallel-group design, 24 healthy young males (24 ± 4 yr) received primed continuous l-[ring-13C6]-phenylalanine infusions while ingesting 30 g potato-derived protein or 30 g milk protein after a single bout of unilateral resistance exercise. Blood and muscle biopsies were collected for 5 h after protein ingestion to assess postprandial plasma amino acid profiles and mixed muscle protein synthesis rates at rest and during recovery from exercise. Results Ingestion of both potato and milk protein increased mixed muscle protein synthesis rates when compared with basal postabsorptive values (from 0.020% ± 0.011% to 0.053% ± 0.017%·h−1 and from 0.021% ± 0.014% to 0.050% ± 0.012%·h−1, respectively; P < 0.001), with no differences between treatments (P = 0.54). In the exercised leg, mixed muscle protein synthesis rates increased to 0.069% ± 0.019% and 0.064% ± 0.015%·h−1 after ingesting potato and milk protein, respectively (P < 0.001), with no differences between treatments (P = 0.52). The muscle protein synthetic response was greater in the exercised compared with the resting leg (P < 0.05). Conclusions Ingestion of 30 g potato protein concentrate increases muscle protein synthesis rates at rest and during recovery from exercise in healthy, young males. Muscle protein synthesis rates after the ingestion of 30 g potato protein do not differ from rates observed after ingesting an equivalent amount of milk protein

    Potato Protein Ingestion Increases Muscle Protein Synthesis Rates at Rest and during Recovery from Exercise in Humans

    Get PDF
    INTRODUCTION: Plant-derived proteins have received considerable attention as an alternative to animal-based proteins and are now frequently used in both plant-based diets and sports nutrition products. However, little information is available on the anabolic properties of potato-derived protein. This study compares muscle protein synthesis rates after the ingestion of 30 g potato protein versus 30 g milk protein at rest and during recovery from a single bout of resistance exercise in healthy, young males. METHODS: In a randomized, double-blind, parallel-group design, 24 healthy young males (24 ± 4 yr) received primed continuous l-[ring-(13)C(6)]-phenylalanine infusions while ingesting 30 g potato-derived protein or 30 g milk protein after a single bout of unilateral resistance exercise. Blood and muscle biopsies were collected for 5 h after protein ingestion to assess postprandial plasma amino acid profiles and mixed muscle protein synthesis rates at rest and during recovery from exercise. RESULTS: Ingestion of both potato and milk protein increased mixed muscle protein synthesis rates when compared with basal postabsorptive values (from 0.020% ± 0.011% to 0.053% ± 0.017%·h(−1) and from 0.021% ± 0.014% to 0.050% ± 0.012%·h(−1), respectively; P < 0.001), with no differences between treatments (P = 0.54). In the exercised leg, mixed muscle protein synthesis rates increased to 0.069% ± 0.019% and 0.064% ± 0.015%·h(−1) after ingesting potato and milk protein, respectively (P < 0.001), with no differences between treatments (P = 0.52). The muscle protein synthetic response was greater in the exercised compared with the resting leg (P < 0.05). CONCLUSIONS: Ingestion of 30 g potato protein concentrate increases muscle protein synthesis rates at rest and during recovery from exercise in healthy, young males. Muscle protein synthesis rates after the ingestion of 30 g potato protein do not differ from rates observed after ingesting an equivalent amount of milk protein

    Ingestion of an ample amount of meat substitute based on a lysine-enriched,plant-based protein blend stimulates postprandial muscle proteinsynthesis to a similar extent as an isonitrogenous amount of chickenin healthy, young men

    Get PDF
    Plant-based proteins are considered to be less effective in their capacity to stimulate muscle protein synthesis when compared with animal-based protein sources, likely due to differences in amino acid contents. We compared the postprandial muscle protein synthetic response following the ingestion of a lysine-enriched plant-based protein product with an isonitrogenous amount of chicken. Twenty-four men (age 24 ± 5 years; BMI 22·9 ± 2·6 kg·m−2) participated in this parallel, double-blind, randomised controlled trial and consumed 40 g of protein as a lysine-enriched wheat and chickpea protein product (Plant, n 12) or chicken breast fillet (Chicken, n 12). Primed, continuous intravenous L-(ring-13C6)-phenylalanine infusions were applied while repeated blood and muscle samples were collected over a 5-h postprandial period to assess plasma amino acid responses, muscle protein synthesis rates and muscle anabolic signalling responses. Postprandial plasma leucine and essential amino acid concentrations were higher following Chicken (P < 0·001), while plasma lysine concentrations were higher throughout in Plant (P < 0·001). Total plasma amino acid concentrations did not differ between interventions (P = 0·181). Ingestion of both Plant and Chicken increased muscle protein synthesis rates from post-absorptive: 0·031 ± 0·011 and 0·031 ± 0·013 to postprandial: 0·046 ± 0·010 and 0·055 ± 0·015 % h−1, respectively (P-time < 0·001), with no differences between Plant and Chicken (time x treatment P = 0·068). Ingestion of 40 g of protein in the form of a lysine-enriched plant-based protein product increases muscle protein synthesis rates to a similar extent as an isonitrogenous amount of chicken in healthy, young men. Plant-based protein products sold as meat replacers may be as effective as animal-based protein sources to stimulate postprandial muscle protein synthesis rates in healthy, young individuals

    The Impact of Pre-sleep Protein Ingestion on the Skeletal Muscle Adaptive Response to Exercise in Humans: An Update

    Get PDF
    This review provides an update on recent research assessing the effect of pre-sleep protein ingestion on muscle protein synthesis rates during overnight sleep and the skeletal muscle adaptive response to exercise training. Protein ingested prior to sleep is effectively digested and absorbed during overnight sleep, thereby increasing overnight muscle protein synthesis rates. Protein consumption prior to sleep does not appear to reduce appetite during breakfast the following day and does not change resting energy expenditure. When applied over a prolonged period of resistance-type exercise training, pre-sleep protein supplementation has a beneficial effect on the increase in muscle mass and strength. Protein ingestion before sleep is hypothesized to represent an effective nutritional strategy to preserve muscle mass in the elderly, especially when combined with physical activity or muscle contraction by means of neuromuscular electrical stimulation. In conclusion, protein ingestion prior to sleep is an effective interventional strategy to increase muscle protein synthesis rates during overnight sleep and can be applied to support the skeletal muscle adaptive response to resistance-type exercise training

    Integrated Myofibrillar Protein Synthesis in Recovery From Unaccustomed and Accustomed Resistance Exercise With and Without Multi-ingredient Supplementation in Overweight Older Men

    Get PDF
    Background: We previously showed that daily consumption of a multi-ingredient nutritional supplement increased lean mass in older men, but did not enhance lean tissue gains during a high-intensity interval training (HIIT) plus resistance exercise training (RET) program. Here, we aimed to determine whether these divergent observations aligned with the myofibrillar protein synthesis (MyoPS) response to acute unaccustomed and accustomed resistance exercise.Methods: A sub-sample of our participants were randomly allocated (n = 15; age: 72 ± 7 years; BMI: 26.9 ± 3.1 kg/m2 [mean ± SD]) to ingest an experimental supplement (SUPP, n = 8: containing whey protein, creatine, vitamin D, and n-3 PUFA) or control beverage (CON, n = 7: 22 g maltodextrin) twice per day for 21 weeks. After 7 weeks of consuming the beverage alone (Phase 1: SUPP/CON only), subjects completed 12 weeks of RET (twice per week) + HIIT (once per week) (Phase 2: SUPP/CON + EX). Orally administered deuterated water was used to measure integrated rates of MyoPS over 48 h following a single session of resistance exercise pre- (unaccustomed) and post-training (accustomed).Results: Following an acute bout of accustomed resistance exercise, 0–24 h MyoPS was 30% higher than rest in the SUPP group (effect size: 0.86); however, in the CON group, 0–24 h MyoPS was 0% higher than rest (effect size: 0.04). Nonetheless, no within or between group changes in MyoPS were statistically significant. When collapsed across group, rates of MyoPS in recovery from acute unaccustomed resistance exercise were positively correlated with training-induced gains in whole body lean mass (r = 0.63, p = 0.01).Conclusion: There were no significant between-group differences in MyoPS pre- or post-training. Integrated rates of MyoPS post-acute exercise in the untrained state were positively correlated with training-induced gains in whole body lean mass. Our finding that supplementation did not alter 0–48 h MyoPS following 12 weeks of training suggests a possible adaptive response to longer-term increased protein intake and warrants further investigation. This study was registered at ClinicalTrials.gov.Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT0228133
    corecore