311 research outputs found

    One-carbon metabolism in cancer

    Get PDF
    Cells require one-carbon units for nucleotide synthesis, methylation and reductive metabolism, and these pathways support the high proliferative rate of cancer cells. As such, anti-folates, drugs that target one-carbon metabolism, have long been used in the treatment of cancer. Amino acids, such as serine are a major one-carbon source, and cancer cells are particularly susceptible to deprivation of one-carbon units by serine restriction or inhibition of de novo serine synthesis. Recent work has also begun to decipher the specific pathways and sub-cellular compartments that are important for one-carbon metabolism in cancer cells. In this review we summarise the historical understanding of one-carbon metabolism in cancer, describe the recent findings regarding the generation and usage of one-carbon units and explore possible future therapeutics that could exploit the dependency of cancer cells on one-carbon metabolism

    Multidimensional sexual perfectionism and female sexual function: A longitudinal investigation

    Get PDF
    Research on multidimensional sexual perfectionism differentiates four forms of sexual perfectionism: self-oriented, partner-oriented, partner-prescribed, and socially prescribed. Self-oriented sexual perfectionism reflects perfectionistic standards people apply to themselves as sexual partners; partner-oriented sexual perfectionism reflects perfectionistic standards people apply to their sexual partner; partner-prescribed sexual perfectionism reflects people’s beliefs that their sexual partner imposes perfectionistic standards on them; and socially prescribed sexual perfectionism reflects people’s beliefs that society imposes such standards on them. Previous studies found partner-prescribed and socially prescribed sexual perfectionism to be maladaptive forms of sexual perfectionism associated with a negative sexual self-concept and problematic sexual behaviors, but only examined cross-sectional relationships. The present article presents the first longitudinal study examining whether multidimensional sexual perfectionism predicts changes in sexual self-concept and sexual function over time. A total of 366 women aged 17-69 years completed measures of multidimensional sexual perfectionism, sexual esteem, sexual anxiety, sexual problem self-blame, and female sexual function (cross-sectional data). Three to six months later, 164 of the women completed the same measures again (longitudinal data). Across analyses, partner-prescribed sexual perfectionism emerged as the most maladaptive form of sexual perfectionism. In the cross-sectional data, partner-prescribed sexual perfectionism showed positive relationships with sexual anxiety, sexual problem self-blame, and intercourse pain and negative relationships with sexual esteem, desire, arousal, lubrication, and orgasmic function. In the longitudinal data, partner-prescribed sexual perfectionism predicted increases in sexual anxiety and decreases in sexual esteem, arousal, and lubrication over time. The findings suggest that partner-prescribed sexual perfectionism contributes to women’s negative sexual self-concept and female sexual dysfunction

    Alzheimer's disease markers in the aged sheep (Ovis aries)

    Get PDF
    This study reports the identification and characterization of markers of Alzheimer's disease (AD) in aged sheep (Ovis aries) as a preliminary step toward making a genetically modified large animal model of AD. Importantly, the sequences of key proteins involved in AD pathogenesis are highly conserved between sheep and human. The processing of the amyloid-β (Aβ) protein is conserved between sheep and human, and sheep Aβ1–42/Aβ1–40 ratios in cerebrospinal fluid (CSF) are also very similar to human. In addition, total tau and neurofilament light levels in CSF are comparable with those found in human. The presence of neurofibrillary tangles in aged sheep brain has previously been established; here, we report for the first time that plaques, the other pathologic hallmark of AD, are also present in the aged sheep brain. In summary, the biological machinery to generate the key neuropathologic features of AD is conserved between the human and sheep, making the sheep a good candidate for future genetic manipulation to accelerate the condition for use in pathophysiological discovery and therapeutic testing

    Urinary Proteomics to Support Diagnosis of Stroke

    Get PDF
    Accurate diagnosis in suspected ischaemic stroke can be difficult. We explored the urinary proteome in patients with stroke (n = 69), compared to controls (n = 33), and developed a biomarker model for the diagnosis of stroke. We performed capillary electrophoresis online coupled to micro-time-of-flight mass spectrometry. Potentially disease-specific peptides were identified and a classifier based on these was generated using support vector machine-based software. Candidate biomarkers were sequenced by liquid chromatography-tandem mass spectrometry. We developed two biomarker-based classifiers, employing 14 biomarkers (nominal p-value <0.004) or 35 biomarkers (nominal p-value <0.01). When tested on a blinded test set of 47 independent samples, the classification factor was significantly different between groups; for the 35 biomarker model, median value of the classifier was 0.49 (−0.30 to 1.25) in cases compared to −1.04 (IQR −1.86 to −0.09) in controls, p<0.001. The 35 biomarker classifier gave sensitivity of 56%, specificity was 93% and the AUC on ROC analysis was 0.86. This study supports the potential for urinary proteomic biomarker models to assist with the diagnosis of acute stroke in those with mild symptoms. We now plan to refine further and explore the clinical utility of such a test in large prospective clinical trials

    Specialized Learning in Antlions (Neuroptera: Myrmeleontidae), Pit-Digging Predators, Shortens Vulnerable Larval Stage

    Get PDF
    Unique in the insect world for their extremely sedentary predatory behavior, pit-dwelling larval antlions dig pits, and then sit at the bottom and wait, sometimes for months, for prey to fall inside. This sedentary predation strategy, combined with their seemingly innate ability to detect approaching prey, make antlions unlikely candidates for learning. That is, although scientists have demonstrated that many species of insects possess the capacity to learn, each of these species, which together represent multiple families from every major insect order, utilizes this ability as a means of navigating the environment, using learned cues to guide an active search for food and hosts, or to avoid noxious events. Nonetheless, we demonstrate not only that sedentary antlions can learn, but also, more importantly, that learning provides an important fitness benefit, namely decreasing the time to pupate, a benefit not yet demonstrated in any other species. Compared to a control group in which an environmental cue was presented randomly vis-à-vis daily prey arrival, antlions given the opportunity to associate the cue with prey were able to make more efficient use of prey and pupate significantly sooner, thus shortening their long, highly vulnerable larval stage. Whereas “median survival time,” the point at which half of the animals in each group had pupated, was 46 days for antlions receiving the Learning treatment, that point never was reached in antlions receiving the Random treatment, even by the end of the experiment on Day 70. In addition, we demonstrate a novel manifestation of antlions' learned response to cues predicting prey arrival, behavior that does not match the typical “learning curve” but which is well-adapted to their sedentary predation strategy. Finally, we suggest that what has long appeared to be instinctive predatory behavior is likely to be highly modified and shaped by learning

    Quantification of Age-Dependent Somatic CAG Repeat Instability in Hdh CAG Knock-In Mice Reveals Different Expansion Dynamics in Striatum and Liver

    Get PDF
    Age at onset of Huntington's disease (HD) is largely determined by the CAG trinucleotide repeat length in the HTT gene. Importantly, the CAG repeat undergoes tissue-specific somatic instability, prevalent in brain regions that are disease targets, suggesting a potential role for somatic CAG repeat instability in modifying HD pathogenesis. Thus, understanding underlying mechanisms of somatic CAG repeat instability may lead to discoveries of novel therapeutics for HD. Investigation of the dynamics of the CAG repeat size changes over time may provide insights into the mechanisms underlying CAG repeat instability.To understand how the HTT CAG repeat length changes over time, we quantified somatic instability of the CAG repeat in Huntington's disease CAG knock-in mice from 2-16 months of age in liver, striatum, spleen and tail. The HTT CAG repeat in spleen and tail was very stable, but that in liver and striatum expanded over time at an average rate of one CAG per month. Interestingly, the patterns of repeat instability were different between liver and striatum. Unstable CAG repeats in liver repeatedly gained similar sizes of additional CAG repeats (approximately two CAGs per month), maintaining a distinct population of unstable repeats. In contrast, unstable CAG repeats in striatum gained additional repeats with different sizes resulting in broadly distributed unstable CAG repeats. Expanded CAG repeats in the liver were highly enriched in polyploid hepatocytes, suggesting that the pattern of liver instability may reflect the restriction of the unstable repeats to a unique cell type.Our results are consistent with repeat expansion occurring as a consequence of recurrent small repeat insertions that differ in different tissues. Investigation of the specific mechanisms that underlie liver and striatal instability will contribute to our understanding of the relationship between instability and disease and the means to intervene in this process

    Equity Ownership Strategy in Greenfield Investments : Influences of Host Country Infrastructure and MNE Resources in Emerging Markets

    Get PDF
    This chapter addresses equity ownership strategy in greenfield investments by multinational enterprises (MNEs) in the emerging markets (EMs). It is one of the few studies to hypothesize and analyze influences of host EM physical infrastructure in relation to investment decisions of MNEs. We use resource dependence theory (RDT) as a theoretical basis and test the moderating effects of firm resources like size and host country investment experience. Moreover, the current study assumes a more nuanced approach to studying equity ownership by analyzing wholly owned subsidiaries versus joint ventures (JVs) and including majority versus minority JVs in the analysis as well. The empirical results based on greenfield investments undertaken by Nordic (Danish, Finnish, Norwegian, and Swedish) MNEs in EMs during 1990–2015 reveals the importance of host country physical infrastructure for high equity ownership strategy. Moreover, host country investment experience moderates the effect of physical infrastructure on equity ownership strategy. Finally, the analysis of a sub-sample of greenfield JVs reveals that determinants of equity ownership strategy differ somewhat between greenfield JV or greenfield wholly owned subsidiaries (WOS).© The Author(s) 2019.fi=vertaisarvioitu|en=peerReviewed
    corecore