187 research outputs found

    Influence of ROV umbilical on power quality when supplying electrical loads

    Get PDF
    The paper investigates the effects of a 3 km electrical umbilical cable on power transmission for an "island" supply onboard an all/more electric 'work-class' remote operated vehicle (ROV). It is shown how the chosen transmission voltage and frequency influence efficiency and the selection of power transmission components. A key feature of the paper is a discussion on the use of matrix converters for the propulsion thruster drive system; thereby allowing the input displacement factor to be varied to maintain maximum power transmission efficiency, independent of the thruster power factor. The natural impedance characteristics of the umbilical cable are also considered as means of reducing the input filter requirements for such converter

    Drive systems for operation on deep-sea ROVs

    Get PDF
    Power systems for thruster actuators and other auxiliaries employed on work-class deep-sea ROVs subject to 300bar ambient pressures, are considered. Emphasis on 3Ă—3 matrix converters for thrusters and 3Ă—2 matrix converters for system auxiliaries, is given, along with experimental results showing operation during pressure cycling consistent with typical operational duties

    Sensorless control of deep-sea ROVs PMSMs excited by matrix converters

    Get PDF
    The paper reports the development of model-based sensorless control methodologies for driving PMSMs using matrix converters. In particular, experimental results show that observer-based state-estimation techniques normally employed for sensorless control of PMSMs using voltage source inverters (VSIs), can be readily exported to matrix converter counterparts with minimal additional computational overhead. Furthermore, zero speed start-up and speed reversal are experimentally demonstrated. Finally, the observer is designed to be fault tolerant such that upon detection of a broken terminal (phase fault), the PMSM remains operational and could be utilized to provide a limp-home capabilit

    Editorial: Integrating Whole Genome Sequencing Into Source Attribution and Risk Assessment of Foodborne Bacterial Pathogens

    Get PDF
    Source attribution and microbial risk assessment have proved to be crucial to identify and prioritize food safety interventions as to effectively control the burden of human illnesses (Cassini et al., 2016; Mughini-Gras et al., 2018a, 2019). By comparing human cases and pathogen occurrences in selected animal, food, and environmental sources, microbial subtyping approaches were successfully applied to pinpoint the most important sources of Salmonella, Campylobacter, Shiga toxin-producing Escherichia coli, and Listeria monocytogenes (Hald et al., 2004; Mullner et al., 2009a,b; Barco et al., 2013; Nielsen et al., 2017; Mughini-Gras et al., 2018b; Cody et al., 2019). Microbial risk assessment has been applied to assess known or potential adverse health effects resulting from human exposure to food-borne hazards. Through a scientific structured approach (FAO and WHO, 2021), microbial risk assessment helps to identify and quantify the risk represented by specific foods and the critical points in these foods' production chains for microbial control (Cassini et al., 2016; FAO and WHO, 2021). For both source attribution and risk assessment, one key challenge has been to define the hazard in question: is the whole foodborne pathogen species a hazard, or only some of its subtypes? In this regard the choice of the subtyping method becomes crucial. In recent years, Whole Genome Sequencing (WGS) has represented a major benefit for more targeted approaches, no longer focused on the species/genus level but at the level of subtypes (Franz et al., 2016; Fritsch et al., 2018; EFSA Panel on Biological Hazards, 2019). Besides WGS, metagenomics showed potentialities in source attribution. In particular, this approach was useful in attributing the source of environmental contamination by comparing the abundances of source-specific genetic markers (i.e., resistome) in different reservoirs (Gupta et al., 2019). Therefore, this special issue focuses on traditional and novel source attribution approaches applied on molecular, WGS, and metagenomic data as well as on a fine-tuning genetic characterization of foodborne pathogens useful for hazard identification and characterization. In particular, one study compares the outputs of a modified Hald model, which was applied to different subtyping input data of S. enterica Typhimurium and its monophasic variant (Arnold et al.) whereas two studies proposed a novel network approach and a method based on the core-genome genetic distance to attribute human infections of S. enterica Typhimurium monophasic variant and S. enterica Derby using WGS as input data (Merlotti et al.; Sévellec et al.). Another study by Duarte et al. included the relative abundance of antimicrobial resistance (AMR) associated genes (resistome) as metagenomic input data in an AMR source attribution study. Finally, two studies were focused on the molecular and genomic characterization of human isolates of Campylobacter jejuni and C. coli from China and of Listeria monocytogenes isolates collected from ready-to-eat meat and processing environment from Poland (Zhang et al.; Kurpas et al.). Arnold et al. performed a source attribution study including the genomes of S. enterica Typhimurium and its monophasic variant of 596 human sources and 327 animal sources from England and Wales between 2014 and 2016. Data from Seven Loci Multi Locus Sequence Typing (7-loci MLST), core-genome MLST (cg-MLST), and SNP calling were compared as input data. By applying a modified Hald model, 60% of human genomes were attributed to pork. Comparing different input data, results highlighted MLST as the method with the lowest fit and the lowest discriminatory power. Merlotti et al. applied a network approach to 351 human and animal genomes of S. enterica Typhimurium and its monophasic variant collected from 2013 to 2014. Three datasets of whole-genome MLST (wgMLST), cgMLST, and SNPs were used as input data. Genomes were clustered based on their genetic similarities. Interestingly, a higher percentage of cluster coherence was reported for animal sources in comparison to country and year of isolation, suggesting animal sources as the major driver of cluster formation. The approach showed to be effective in attributing up to 97.2% of human genomes to animal sources represented in the dataset. Among these genomes, the majority (84%) was attributed to pigs/pork. No significant differences were highlighted by comparing the three different input datasets. Core genome analysis was the approach applied by Sévellec et al. to attribute human sporadic cases of S. enterica Derby that occurred in France in 2014–2015 to non-human reservoirs. The authors analyzed 299 S. enterica Derby genomes corresponding to all S. enterica Derby sporadic human cases registered in the time frame, along with 141 non-human genomes. Within the non-human genomes, three main genomic lineages were detected in France: ST39-ST40 and ST682 associated to pork and ST71 associated to poultry. Within human genomes, 94% of S. enterica Derby clustered within the three genetic groups associated with pork, identifying this animal reservoir as the major contributor of S. enterica Derby to sporadic human cases in France. Relative abundance of antimicrobial resistance genes in shotgun metagenomic data was chosen in an antimicrobial resistance source attribution study by Duarte et al.. Starting from the assumption that fecal resistomes are source related, authors compared the resistomes of pooled fecal samples of pigs, broilers, turkeys, and veal calves with the resistomes of individual fecal samples of humans occupationally exposed to livestock production. Five supervised random forest models were applied on a total of 479 observations. Among the four livestock species, the results indicated that pigs have the resistome composition closest to the composition of the human resistome suggesting that occupational exposure to AMR determinants was higher among workers exposed to pigs than workers of broiler farms. Zhang et al. characterized genetic diversity and antimicrobial resistance of 236 Campylobacter jejuni and C. coli isolates collected from 2,945 individual stool samples of hospitalized patients with diarrhea in Beijing from 2017 to 2018. MLST results confirmed the high genetic diversity among isolates as well as CC21 as the most common clonal complex of C. jejuni in diarrhea patients in China. Clonal complex CC828 was the most frequently identified among C. coli isolates. Regarding antimicrobial resistance, rates higher than 88% were identified for the antimicrobials nalidixic acid, ciprofloxacin, and tetracycline. Last but not least, Kurpas et al. genetically characterized 48 L. monocytogenes isolates of PCR-serogroup IIb and IVb collected from ready-to-eat food and food processing environments. Additionally, the authors compared them with public genomes collected from humans in Poland. Among food isolates, 65% belonged to CC1, CC2, and CC6 already described as hypervirulent strains in humans. The clonal complex CC5 was also identified; mostly collected from food processing environments and belonging to PCR-serogroup IIB. Genomes of this clonal complex showed mutations in the inlA gene and a deletion of 144 bp in the inlB gene suggesting them as hypovirulent. Based on these studies, we conclude that the application of NGS data, in particular source attribution models, shows great potential. The results are improved by becoming more specific and to the point, which is considered very valuable for the decision support process. Integrations with phenotypic tests will continue to be essential for confirmation of NGS predicted outcomes

    A transgenic mouse model for tumour immunotherapy: induction of an anti-idiotype response to human MUC1

    Get PDF
    MUC1 is a membrane bound, polymorphic epithelial mucin expressed at the luminal surface of glandular epithelium. It is highly expressed in an underglycosylated form on carcinomas and metastatic lesions and is, therefore, a potential target for immunotherapy of cancer. The monoclonal antibody HMFG1 binds the linear core protein sequence, PDTR, contained within the immunodominant domain of the tandem repeat of MUC1. The efficacy of murine and humanized HMFG1 (Ab1) used as an anti-idiotypic vaccine was examined in mice transgenic for human MUC1 (MUC1.Tg) challenged with murine epithelial tumour cells transfected with human MUC1. Humoral idiotypic cascade through Ab2 and Ab3 antibodies was observed in MUC1.Tg mice following multiple antibody inoculations in the presence of adjuvant. Impaired tumour growth at day 35 and highest Ab3 levels were found in mice that had received mHMFG1 with RAS adjuvant. However, comparison of Ab3 levels in individual mice with tumour size in all treatment groups did not show a correlation between smaller tumours and increased levels of anti-idiotype antibody. This suggests that the anti-tumour effects of anti-idiotype vaccination are not solely related to the induction of idiotypic antibody cascades and probably involve other mechanisms. © 2000 Cancer Research Campaig

    Anticorpos líticos induzidos por infecção pelo Trypanosoma cruzi reconhecem epitopos presentes nas formas tripomastigotas e epimastigotas do parasita

    Get PDF
    Sera of Chaga's disease patients containing anti-T. cruzi lytic antibodies were submitted to affinity chromatography using Sepharose 4B conjugated with antigen extracted from epimasiigote or trypomasiigote forms of the parasite. Epimastigotes were obtained from culture at the exponential growth phase and the trypomastigotes from blood of infected and immunosuppressed mice. Antigen of both parasite forms was obtained by sonication of the parasites followed by centrifugation. Both antigens were then conjugated to activated Sepharose 4B. Affinity chromatography was performed by passing sera from chagasic patients through an immunoadsorbent column containing either epimasiigote or trypomasiigote antigens. Antibodies bound to the column were eluted with cold 0,2 M glycine buffer pH 2,8. The eluted antibodies were analysed regarding their isotype and lytic activity. The results showed that anti-T. cruzi lytic antibodies present in sera from chagasic patients are mainly located in the IgG isotype and recognize epitopes present in both trypomasiigote and epimastigote forms. A brief report of this work has already been published12.Soro de pacientes com doença de Chagas na fase crônica foram submetidos a cromatografia de afinidade com Sepharose 4B conjugada com um extrato antigênico obtido de formas epimastigotas ou tripomastigotas de T. cruzi: os epimastigotas foram obtidos de cultura na fase exponencial de crescimento e os tripomastigotas de sangue de camundongos infectados e imunossuprimidos. Os antígenos de ambas formas parasitárias foram obtidos por tratamento dos parasitas por ultra-som, seguido de centrifugação. A cromatografia de afinidade foi feita passando-se os soros chagásicos através de uma coluna de imunoadsorvente contendo antígenos de epimastigotas ou tripomastigotas. Os anticorpos foram eluídos da coluna com tampão glicina 0,2 M pH 2,8 a 4°C. Os anticorpos eluidos foram analisados quanto ao seu isotipo e atividade lítica. Os resultados mostraram que os anticorpos anti-T. cruzi com atividade lítica presentes em soros chagásicos estão localizados no isotipo IgG e reconhecem epitopos presentes tanto nos tripomastigotas quanto nos epimastigotas

    Oxygen sensing, mitochondrial biology and experimental therapeutics for pulmonary hypertension and cancer

    Get PDF
    The homeostatic oxygen sensing system (HOSS) optimizes systemic oxygen delivery. Specialized tissues utilize a conserved mitochondrial sensor, often involving NDUFS2 in complex I of the mitochondrial electron transport chain, as a site of pO2-responsive production of reactive oxygen species (ROS). These ROS are converted to a diffusible signaling molecule, hydrogen peroxide (H2O2), by superoxide dismutase (SOD2). H2O2 exits the mitochondria and regulates ion channels and enzymes, altering plasma membrane potential, intracellular Ca2+ and Ca2+-sensitization and controlling acute, adaptive, responses to hypoxia that involve changes in ventilation, vascular tone and neurotransmitter release. Subversion of this O2-sensing pathway creates a pseudohypoxic state that promotes disease progression in pulmonary arterial hypertension (PAH) and cancer. Pseudohypoxia is a state in which biochemical changes, normally associated with hypoxia, occur despite normal pO2. Epigenetic silencing of SOD2 by DNA methylation alters H2O2 production, activating hypoxia-inducible factor 1α, thereby disrupting mitochondrial metabolism and dynamics, accelerating cell proliferation and inhibiting apoptosis. Other epigenetic mechanisms, including dysregulation of microRNAs (miR), increase pyruvate dehydrogenase kinase and pyruvate kinase muscle isoform 2 expression in both diseases, favoring uncoupled aerobic glycolysis. This Warburg metabolic shift also accelerates cell proliferation and impairs apoptosis. Disordered mitochondrial dynamics, usually increased mitotic fission and impaired fusion, promotes disease progression in PAH and cancer. Epigenetic upregulation of dynamin-related protein 1 (Drp1) and its binding partners, MiD49 and MiD51, contributes to the pathogenesis of PAH and cancer. Finally, dysregulation of intramitochondrial Ca2+, resulting from impaired mitochondrial calcium uniporter complex (MCUC) function, links abnormal mitochondrial metabolism and dynamics. MiR-mediated decreases in MCUC function reduce intramitochondrial Ca2+, promoting Warburg metabolism, whilst increasing cytosolic Ca2+, promoting fission. Epigenetically disordered mitochondrial O2-sensing, metabolism, dynamics, and Ca2+ homeostasis offer new therapeutic targets for PAH and cancer. Promoting glucose oxidation, restoring the fission/fusion balance, and restoring mitochondrial calcium regulation are promising experimental therapeutic strategies
    • …
    corecore