819 research outputs found

    Hydropyrolysis: implications for radiocarbon pre-treatment and characterization of Black Carbon

    Get PDF
    Charcoal is the result of natural and anthropogenic burning events, when biomass is exposed to elevated temperatures under conditions of restricted oxygen. This process produces a range of materials, collectively known as pyrogenic carbon, the most inert fraction of which is known as Black Carbon (BC). BC degrades extremely slowly, and is resistant to diagenetic alteration involving the addition of exogenous carbon making it a useful target substance for radiocarbon dating particularly of more ancient samples, where contamination issues are critical. We present results of tests using a new method for the quantification and isolation of BC, known as hydropyrolysis (hypy). Results show controlled reductive removal of non-BC organic components in charcoal samples, including lignocellulosic and humic material. The process is reproducible and rapid, making hypy a promising new approach not only for isolation of purified BC for 14C measurement but also in quantification of different labile and resistant sample C fractions

    Pneumococcal Serotype-Specific Antibodies Persist through Early Childhood after Infant Immunization: Follow-Up from a Randomized Controlled Trial

    Get PDF
    Background: In a previous UK multi-center randomized study 278 children received three doses of 7-valent (PCV-7) or 13- valent (PCV-13) pneumococcal conjugate vaccine at 2, 4 and 12 months of age. At 13 months of age, most of these children had pneumococcal serotype-specific IgG concentrations 0.35mg/mlandopsonophagocyticassay(OPA)titers0.35 mg/ml and opsonophagocytic assay (OPA) titers 8. Methods: Children who had participated in the original study were enrolled again at 3.5 years of age. Persistence of immunity following infant immunization with either PCV-7 or PCV-13 and the immune response to a PCV-13 booster at preschool age were investigated. Results: In total, 108 children were followed-up to the age of 3.5 years and received a PCV-13 booster at this age. At least 76% of children who received PCV-7 or PCV-13 in infancy retained serotype-specific IgG concentrations 0.35mg/mlagainsteachof5/7sharedserotypes.Forserotypes4and18C,persistencewaslowerat22–420.35 mg/ml against each of 5/7 shared serotypes. For serotypes 4 and 18C, persistence was lower at 22–42%. At least 71% of PCV-13 group participants had IgG concentrations 0.35 mg/ml against each of 4/6 of the additional PCV-13 serotypes; for serotypes 1 and 3 this proportion was 45% and 52%. In the PCV-7 group these percentages were significantly lower for serotypes 1, 5 and 7F. A pre-school PCV-13 booster was highly immunogenic and resulted in low rates of local and systemic adverse effects. Conclusion: Despite some decline in antibody from 13 months of age, these data suggest that a majority of pre-school children maintain protective serotype-specific antibody concentrations following conjugate vaccination at 2, 4 and 12 months of age. Trial Registration: ClinicalTrials.gov NCT0109547

    Visual arts participation and young children’s social emotional wellbeing:a scoping review

    Get PDF
    This scoping review examines the prevalence of visual art participation in studies of young children’s social emotional wellbeing. Systematic reviews were identified through a search of two databases, grey literature, and reference lists. 22 reviews contained at least one study of visual art participation in children 0-9 years. Ten of these were analysed in a subset of visual art participation in children 0-5 years. The studies therein were primarily delivered by art therapists, with associated scaffolding. Other studies involved performing arts or mixed artforms. A knowledge gap has been identified which the authors will address with a systematic review

    Thermal degradation of Cross-Linked Polyisoprene and Polychloroprene

    Get PDF
    Polyisoprene and polychloroprene have been cross-linked either in solution or in solid state using free radical initiators. In the comparable experimental conditions higher cross-linking density was observed in the solid state process. Independent of the cross-linking method, polychloroprene tended to give a higher gel content and cross-link density than does polyisoprene. Infrared characterization of the cross-linked materials showed cis-trans isomerization occurred in the polyisoprene initiated by benzoyl peroxide, whereas no isomerization was found in the samples initiated by dicumyl peroxide. Polyisoprene does not cross-link by heating in a thermal analyzer, whereas polychloroprene easily undergoes cross-linking in such conditions. Infrared spectroscopy showed that in the case of polyisoprene, rearrangements occur upon heating which lead to the formation of terminal double bonds, while polychloroprene loses hydrogen chlorine which leads to a conjugated structure. There is apparently some enhancement of the thermal and thermal oxidative stability of polyisoprene because of the cross-linking. Cross-linked polychloroprene is less thermally stable than the virgin polymer. Cross-linking promotes polymers charring in the main step of weight loss in air, which leads to enhanced transitory char

    Searching for nonlocal lithologies in the Apollo 12 regolith: a geochemical and petrological study of basaltic coarse fines from the Apollo lunar soil sample 12023,155

    Get PDF
    New data from a petrological and geochemical examination of 12 coarse basaltic fines from the Apollo 12 soil sample 12023,155 provide evidence of additional geochemical diversity at the landing site. In addition to the bulk chemical composition, major, minor, and trace element analyses of mineral phases are employed to ascertain how these samples relate to the Apollo 12 lithological basalt groups, thereby overcoming the problems of representativeness of small samples. All of the samples studied are low-Ti basalts (0.9–5.7 wt% TiO2), and many fall into the established olivine, pigeonite, and ilmenite classification of Apollo 12 basaltic suites. There are five exceptions: sample 12023,155_1A is mineralogically and compositionally distinct from other Apollo 12 basalt types, with low pigeonite REE concentrations and low Ni (41–55 ppm) and Mn (2400–2556 ppm) concentrations in olivine. Sample 12023,155_11A is also unique, with Fe-rich mineral compositions and low bulk Mg# (=100 × atomic Mg/[Mg+Fe]) of 21.6. Sample 12023,155_7A has different plagioclase chemistry and crystallization trends as well as a wider range of olivine Mg# (34–55) compared with other Apollo 12 basalts, and shows greater similarities to Apollo 14 high-Al basalts. Two other samples (12023,155_4A, and _5A) are similar to the Apollo 12 feldspathic basalt 12038, providing additional evidence that feldspathic basalts represent a lava flow proximal to the Apollo 12 site rather than material introduced by impacts. We suggest that at least one parent magma, and possibly as many as four separate parent magmas, are required in addition to the previously identified olivine, pigeonite, and ilmenite basaltic suites to account for the observed chemical diversity of basalts found in this study

    Lunar basalt chronology, mantle differentiation and implications for determining the age of the Moon

    Get PDF
    Despite more than 40 years of studying Apollo samples, the age and early evolution of the Moon remain contentious. Following the formation of the Moon in the aftermath of a giant impact, the resulting Lunar Magma Ocean (LMO) is predicted to have generated major geochemically distinct silicate reservoirs, including the sources of lunar basalts. Samples of these basalts, therefore, provide a unique opportunity to characterize these reservoirs. However, the precise timing and extent of geochemical fractionation is poorly constrained, not least due to the difficulty in determining accurate ages and initial Pb isotopic compositions of lunar basalts. Application of an in situ ion microprobe approach to Pb isotope analysis has allowed us to obtain precise crystallization ages from six lunar basalts, typically with an uncertainty of about ±10Ma, as well as constrain their initial Pb-isotopic compositions. This has enabled construction of a two-stage model for the Pb-isotopic evolution of lunar silicate reservoirs, which necessitates the prolonged existence of high-ÎŒ reservoirs in order to explain the very radiogenic compositions of the samples. Further, once firm constraints on U and Pb partitioning behaviour are established, this model has the potential to help distinguish between conflicting estimates for the age of the Moon. Nonetheless, we are able to constrain the timing of a lunar mantle reservoir differentiation event at 4376±18Ma, which is consistent with that derived from the Sm–Nd and Lu–Hf isotopic systems, and is interpreted as an average estimate of the time at which the high-ÎŒ urKREEP reservoir was established and the Ferroan Anorthosite (FAN) suite was formed
    • 

    corecore