2 research outputs found

    Choosy beetles : How host trees and southern boreal forest naturalness may determine dead wood beetle communities

    Get PDF
    Wood-living beetles make up a large proportion of forest biodiversity and contribute to important ecosystem services, including decomposition. Beetle communities in managed southern boreal forests are less species rich than in natural and near-natural forest stands. In addition, many beetle species rely primarily on specific tree species. Yet, the associations between individual beetle species, forest management category, and tree species are seldom quantified, even for red-listed beetles. We compiled a beetle capture dataset from flight intercept traps placed on Norway spruce (Picea abies), oak (Quercus sp.), and Eurasian aspen (Populus tremulae) trees in 413 sites in mature managed forest, near-natural forest, and clear-cuts in southeastern Norway. We used joint species distribution models to estimate the strength of associations for 368 saproxylic beetle species (including 20 vulnerable, endangered, or critical red-listed species) for each forest management category and tree species. Tree species on which traps were mounted had the largest effect on beetle communities; oaks had the most highly associated beetle species, including most of the red-listed species, followed by Norway spruce and Eurasian aspen. Most beetle species were more likely to be captured in near-natural than in mature managed forest. Our estimated associations were compatible ? for many species ? with categorical classifications found in several existing databases of saproxylic beetle preferences. These quantitative beetle-habitat associations will improve future analyses that have typically relied on categorical classifications. Our results highlight the need to prioritize conservation of near-natural forests and oak trees in Scandinavia to protect the habitat of many red-listed species in particular. Furthermore, we underline the importance of carefully considering the species of trees on which traps are mounted in order to representatively sample beetle communities in forest stands.Peer reviewe

    Divergent responses of beta-diversity among organism groups to a strong environmental gradient

    Get PDF
    A limited understanding of how variation in the species composition among communities (i.e., beta-diversity) changes along natural environmental gradients, and the mechanisms responsible, inhibits our ability to understand large-scale biodiversity change resulting from either natural or anthropogenic drivers. Therefore, our aim was to test key drivers of beta-diversity patterns along a strong, natural environmental gradient for seven widely different organisms groups, that is, root-associated fungi, litter fungi, soil nematodes, vascular plants, epiphytic lichens, beetles, and spiders. Using previously published community-level data from boreal-forested islands, we calculated alpha-diversity and beta-diversity for each of the seven organism groups. Out of several available environmental variables, we identified four variables, that is, ecosystem age, total C storage, net primary productivity (NPP), and N-to-P ratio, as potential predictors of variation in beta-diversity. We found that ecosystem age was the variable with the highest overall importance. We then used two different methods to quantify the relative importance of stochastic and deterministic processes underlying patterns in beta-diversity along the ecosystem age gradient, and our detailed knowledge based on prior data collection in the study system to mechanistically explain among-group differences in these patterns. We found divergent responses in beta-diversity along the age gradient for the seven different organism groups, due to among-group differences in the relative importance of deterministic vs. stochastic community assembly, and attributed these results to reliance on resources from different energy channels that are not always related to NPP. Our results highlight the necessity to consider the importance of taxon-specific resources, and not only NPP, to obtain an understanding of beta-diversity patterns among organism groups and ecosystems, as well as large-scale patterns in biodiversity. They therefore also suggest that management and protection of beta-biodiversity in the landscape requires explicit consideration of a wide range of habitats
    corecore