1,606 research outputs found
Hiding its age: the case for a younger bulge
The determination of the age of the bulge has led to two contradictory
results. On the one side, the color-magnitude diagrams in different bulge
fields seem to indicate a uniformly old (10 Gyr) population. On the other
side, individual ages derived from dwarfs observed through microlensing events
seem to indicate a large spread, from 2 to 13 Gyr. Because the
bulge is now recognised as being mainly a boxy peanut-shaped bar, it is
suggested that disk stars are one of its main constituents, and therefore also
stars with ages significantly younger than 10 Gyr. Other arguments as well
point to the fact that the bulge cannot be exclusively old, and in particular
cannot be a burst population, as it is usually expected if the bulge was the
fossil remnant of a merger phase in the early Galaxy. In the present study, we
show that given the range of metallicities observed in the bulge, a uniformly
old population would be reflected into a significant spread in color at the
turn-off which is not observed. Inversely, we demonstrate that the correlation
between age and metallicity expected to hold for the inner disk would conspire
to form a color-magnitude diagram with a remarkably small spread in color, thus
mimicking the color-magnitude diagram of a uniformly old population. If stars
younger than 10 Gyr are part of the bulge, as must be the case if the bulge has
been mainly formed through dynamical instabilities in the disk, then a very
small spread at the turn-off is expected, as seen in the observations.Comment: 11 pages, 11 figures. Accepted for publication in A&
Developments in Random Matrix Theory
In this preface to the Journal of Physics A, Special Edition on Random Matrix
Theory, we give a review of the main historical developments of random matrix
theory. A short summary of the papers that appear in this special edition is
also given.Comment: 22 pages, Late
Random Matrix Theory and the Fourier Coefficients of Half-Integral Weight Forms
Conjectured links between the distribution of values taken by the
characteristic polynomials of random orthogonal matrices and that for certain
families of L-functions at the centre of the critical strip are used to
motivate a series of conjectures concerning the value-distribution of the
Fourier coefficients of half-integral weight modular forms related to these
L-functions. Our conjectures may be viewed as being analogous to the Sato-Tate
conjecture for integral weight modular forms. Numerical evidence is presented
in support of them.Comment: 28 pages, 8 figure
Signatures of radial migration in barred galaxies: Azimuthal variations in the metallicity distribution of old stars
By means of N-body simulations, we show that radial migration in galaxy
disks, induced by bar and spiral arms, leads to significant azimuthal
variations in the metallicity distribution of old stars at a given distance
from the galaxy center. Metals do not show an axisymmetric distribution during
phases of strong migration. Azimuthal variations are visible during the whole
phase of strong bar phase, and tend to disappear as the effect of radial
migration diminishes, together with a reduction in the bar strength. These
results suggest that the presence of inhomogeneities in the metallicity
distribution of old stars in a galaxy disk can be a probe of ongoing strong
migration. Such signatures may be detected in the Milky Way by Gaia (and
complementary spectroscopic data), as well as in external galaxies, by IFU
surveys like CALIFA and ATLAS3D. Mixing - defined as the tendency toward a
homogeneous, azimuthally symmetric, stellar distribution in the disk - and
migration turns out to be two distinct processes, the effects of mixing
starting to be visible when strong migration is over.Comment: 8 pages, 10 figures, accepted for publication on Astronomy and
Astrophysic
Autocorrelation of Random Matrix Polynomials
We calculate the autocorrelation functions (or shifted moments) of the
characteristic polynomials of matrices drawn uniformly with respect to Haar
measure from the groups U(N), O(2N) and USp(2N). In each case the result can be
expressed in three equivalent forms: as a determinant sum (and hence in terms
of symmetric polynomials), as a combinatorial sum, and as a multiple contour
integral. These formulae are analogous to those previously obtained for the
Gaussian ensembles of Random Matrix Theory, but in this case are identities for
any size of matrix, rather than large-matrix asymptotic approximations. They
also mirror exactly autocorrelation formulae conjectured to hold for
L-functions in a companion paper. This then provides further evidence in
support of the connection between Random Matrix Theory and the theory of
L-functions
The stellar metallicity gradients in galaxy discs in a cosmological scenario
Indexación: Web of ScienceContext. The stellar metallicity gradients of disc galaxies provide information on disc assembly, star formation processes, and chemical evolution. They also might store information on dynamical processes that could affect the distribution of chemical elements in the gas phase and the stellar components. Understanding their joint effects within a hierarchical clustering scenario is of paramount importance.
Aims. We studied the stellar metallicity gradients of simulated discs in a cosmological simulation. We explored the dependence of the stellar metallicity gradients on stellar age and on the size and mass of the stellar discs.
Methods. We used a catalogue of galaxies with disc components selected from a cosmological hydrodynamical simulation performed including a physically motivated supernova feedback and chemical evolution. Disc components were defined based on angular momentum and binding energy criteria. The metallicity profiles were estimated for stars with different ages. We confront our numerical findings with results from the Calar Alto Legacy Integral Field Area (CALIFA) Survey.
Results. The simulated stellar discs are found to have metallicity profiles with slopes in global agreement with observations. Low stellar mass galaxies tend to have a larger variety of metallicity slopes. When normalized by the half-mass radius, the stellar metallicity gradients do not show any dependence and the dispersion increases significantly, regardless of the galaxy mass. Galaxies with stellar masses of around 10(10) M-circle dot show steeper negative metallicity gradients. The stellar metallicity gradients correlate with the half-mass radius. However, the correlation signal is not present when they are normalized by the half-mass radius. Stellar discs with positive age gradients are detected to have negative and positive metallicity gradients, depending on the relative importance of recent star formation activity in the central regions.
Conclusions. Our results suggest that inside-out formation is the main process responsible for the metallicity and age profiles. The large dispersions in the metallicity gradients as a function of stellar mass could be ascribed to the effects of dynamical processes such as mergers, interactions and/or migration as well as those regulating the conversion of gas into stars. The fingerprints of the inside-out formation seem better preserved by the stellar metallicity gradients as a function of the half-mass radius.http://www.aanda.org/articles/aa/abs/2016/08/aa28188-16/aa28188-16.htm
- …