57,459 research outputs found

    On the starting process of strongly nonlinear vortex/Rayleigh-wave interactions

    Get PDF
    An oncoming two-dimensional laminar boundary layer that develops an unstable inflection point and becomes three-dimensional is described by the Hall-Smith (1991) vortex/wave interaction equations. These equations are now examined in the neighbourhood of the position where the critical surface starts to form. A consistent structure is established in which an inviscid core flow is matched to a viscous buffer-layer solution where the appropriate jump condition on the transverse shear stress is satisfied. The final result is a bifurcation equation for the (constant) amplitude of the wave pressure. A representative classical velocity profile is considered to illustrate solutions of this equation for a range of values of the wave-numbers

    On the recurrence set of planar Markov Random Walks

    Full text link
    In this paper, we investigate the properties of recurrent planar Markov random walks. More precisely, we study the set of recurrent points with the use of local limit theorems. The Nagaev-Guivarc'h spectral method provides several examples for which these local limit theorems are satisfied as soon as the (standard or non-standard) central limit theorem holds

    Instabilities in a high-Reynolds-number boundary layer on a film-coated surface

    Get PDF
    A high-Reynolds-number asymptotic theory is developed for linear instability waves in a two-dimensional incompressible boundary layer on a flat surface coated with a thin film of a different fluid. The focus in this study is on the influence of the film flow on the lower-branch Tollmien-Schlighting waves, and also on the effect of boundary-layer/potential flow interaction on interfacial instabilities. Accordingly, the film thickness is assumed to be comparable to the thickness of a viscous sublayer in a three-tier asymptotic structure of lower-branch Tollmien-Schlichting disturbances. A fully nonlinear viscous/inviscid interaction formulation is derived, and computational and analytical solutions for small disturbances are obtained for both Tollmien-Schlichting and interfacial instabilities for a range of density and viscosity ratios of the fluids, and for various values of the surface tension coefficient and the Froude number. It is shown that the interfacial instability contains the fastest growing modes and an upper-branch neutral point within the chosen flow regime if the film viscosity is greater than the viscosity of the ambient fluid. For a less viscous film the theory predicts a lower neutral branch of shorter-scale interfacial waves. The film flow is found to have a strong effect on the Tollmien-Schlichting instability, the most dramatic outcome being a powerful destabilization of the flow due to a linear resonance between growing Tollmien-Schlichting and decaying capillary modes. Increased film viscosity also destabilizes Tollmien-Schlichting disturbances, with the maximum growth rate shifted towards shorter waves. Qualitative and quantitative comparisons are made with experimental observations by Ludwieg & Hornung (1989)

    Concerning marginal singularities in the boundary-layer flow on a downstream-moving surface

    Get PDF
    The formation of separation singularities in solutions of the classical boundary-layer equations is studied numerically and analytically for the case of a two-dimensional incompressible steady flow near a solid surface moving in the direction of the main stream. Unlike the previously studied regime of the incipient separation located at the maximum point in the external pressure distribution, the breakdown in this work occurs under an adverse pressure forcing and involves a regular flow field upstream of the Moore-Rolt-Sears point with an algebraic non-analyticity downstream. Small deviations from the precisely regular approach to the singular point are shown to result in an exponential amplification of linear disturbances; in the subsequent nonlinear stage the solution terminates in a finite-distance blow-up singularity or, alternatively, continues in a regular fashion across the singular station. The case of asymptotically small slip velocities is considered and a connection with marginal separation on a fixed wall is discussed

    A hybrid genetic algorithm and tabu search approach for post enrolment course timetabling

    Get PDF
    Copyright @ Springer Science + Business Media. All rights reserved.The post enrolment course timetabling problem (PECTP) is one type of university course timetabling problems, in which a set of events has to be scheduled in time slots and located in suitable rooms according to the student enrolment data. The PECTP is an NP-hard combinatorial optimisation problem and hence is very difficult to solve to optimality. This paper proposes a hybrid approach to solve the PECTP in two phases. In the first phase, a guided search genetic algorithm is applied to solve the PECTP. This guided search genetic algorithm, integrates a guided search strategy and some local search techniques, where the guided search strategy uses a data structure that stores useful information extracted from previous good individuals to guide the generation of offspring into the population and the local search techniques are used to improve the quality of individuals. In the second phase, a tabu search heuristic is further used on the best solution obtained by the first phase to improve the optimality of the solution if possible. The proposed hybrid approach is tested on a set of benchmark PECTPs taken from the international timetabling competition in comparison with a set of state-of-the-art methods from the literature. The experimental results show that the proposed hybrid approach is able to produce promising results for the test PECTPs.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and Grant EP/E060722/02

    Genetic algorithms with guided and local search strategies for university course timetabling

    Get PDF
    This article is posted here with permission from the IEEE - Copyright @ 2011 IEEEThe university course timetabling problem (UCTP) is a combinatorial optimization problem, in which a set of events has to be scheduled into time slots and located into suitable rooms. The design of course timetables for academic institutions is a very difficult task because it is an NP-hard problem. This paper investigates genetic algorithms (GAs) with a guided search strategy and local search (LS) techniques for the UCTP. The guided search strategy is used to create offspring into the population based on a data structure that stores information extracted from good individuals of previous generations. The LS techniques use their exploitive search ability to improve the search efficiency of the proposed GAs and the quality of individuals. The proposed GAs are tested on two sets of benchmark problems in comparison with a set of state-of-the-art methods from the literature. The experimental results show that the proposed GAs are able to produce promising results for the UCTP.This work was supported by the Engineering and Physical Sciences Research Council of U.K. under Grant EP/E060722/1
    corecore