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Boundary Value Problems for the Helmholtz Equation in a 

Half-Plane 
 

S. N. Chandler-Wilde* 
 

Abstract 
      The Dirichlet and impedance boundary value problems for the Helmholtz equation 
in a half-plane with bounded continuous boundary data are studied. For the Dirichlet 
problem the solution can be constructed explicitly. We point out that, for wavenumbers 
k > 0, the solution, although it satisfies a limiting absorption principle, may increase 
in magnitude with distance from the boundary. Using the explicit solution we propose 
a novel radiation condition which we utilise in formulating the impedance boundary 
value problem. By reformulating this problem as a boundary integral equation we 
prove uniqueness and existence of solution for a certain range of admissable impedance 
boundary data. 

 
1 Introduction 
We give in this paper a rigorous account of the Dirichlet and impedance boundary value 
problems for the Helmholtz equation in the half-plane U =  with },0R){( 2

2
21 >∈ x:,xx

arbitrary bounded and continuous boundary data. 

 The Dirichlet problem is much the easier in that, using the Dirichlet Green's function 
for the half-plane, a solution can be written down explicitly as a double-layer potential on 
the boundary Γ = {(x1, 0) : x1∈  R}, with density the given boundary data. In the case   
k > 0 we point out that, although this solution is the physically correct one, in that it is 
the unique solution satisfying the limiting absorption principle, the solution radiated from 
the boundary does not necessarily decay or remain bounded but may grow algebraically 
at a rate not exceeding h1/2, where h is the distance from the boundary. We construct a 
solution achieving this growth rate. 

 This preliminary study of the Dirichlet problem is of assistance in formulating the 
impedance boundary value problem, which has been studied previously as a model of 
outdoor sound propagation [9, 4, 2], Specifically, as a radiation condition for the impedance 
problem, we suppose that in some half-plane Uh = {(x1, x2) ∈  R2 :> x2> h}, with   
h > 0, the solution u can be written as a double-layer potential on the boundary 
Γh = {(x1,h) : x1∈  R}, with some bounded continuous density, so that u satisfies a 
Dirichlet problem in the half-plane Uh. It is anticipated that this radiation condition, which 
appears to be novel and is a generalisation of the usual radiation condition for plane wave 
scattering by a one-dimensional diffraction grating [11, 10], will prove useful in formulating  
a wider range of diffraction problems, e.g. plane wave scattering by infinite rough surfaces 
[8, 6]. 

 Here we show that this radiation condition is sufficiently strong to establish a form 
of Green's representation theorem, enabling the reformulation of the impedance boundary 
value problem as a second kind boundary integral equation. For admittance boundary 
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data β for which || β – 1||∞ is sufficiently small, the integral operator in the equation is   
a contraction mapping, and existence, uniqueness, and stability results for the impedance 
boundary value problem follow by a standard Neumann's series argument (see the final 
Theorem 4.4). 
 
2     Notation and Preliminaries 
Throughout, x = (x1, x2), y = (y1, y2) will denote points in R2. For  h ≥ 0, Uh  will denote 
the half-plane, Uh = {x : x2 > h} and Γh its boundary, Γh = {x : x2 = h}. We will 
abbreviate U0 and Γ0 by U and Γ, respectively. For all x ∈  Uh, x’h will denote the image of  
x in Γh, i.e. x'h := (x1, 2h - x2). We abbreviate x'0 by x'. 
 For the most part our function space notation is standard. For S  R⊂ 2, C (S) will 
denote the set of functions continuous on S, and BC(S) the set of functions bounded 
and continuous on S. The set BC(S) with the normal vector space operations and the 
supremum norm, ,)x(: sx ψ=ψ ∈∞

sup  forms a Banach space. 
 For u∈  C (U) and h > 0, define uh ∈C(R) by uh(s) : = u((s,h)), s ∈  R, so that uh 
is the restriction of u to Γh If u∈C(U ) then we can define u0 by the same formula with 
h=0. If u∈Cl(U), define also (R)Ch/uh ∈∂∂  by R,))(()( ∈∂∂ ∂ = ∂ s,hh,sush/uh / so 
that ∂  is the restriction of h/uh ∂ 2x/u ∂∂  to Γh. 
 Many of the equations presented can be written compactly using a convolution notation. 
For φ∈L1(R) and ψ∈Lp(R) define φ*ψ by 

(1)   ∫
∞+
∞−

−= .dt)t()ts(:)s(* ψϕψϕ  

From Young's Theorem, φ*ψ(s), defined by (1), exists for almost all s∈  R, and   
φ*ψ∈Lp (R) with 
(2)     .pψ1pψ* ϕϕ ≤  

For p =  we have that φ *ψ(s) is well-defined for every s∞ ∈R and that φ*ψ∈  BC(R).  
 For {ψn}⊂BC(R), ψ∈BC(R), say that ψn converges strictly to ψ and write ψ  ψs

n ⎯→⎯
if supn||ψn||∞ <∞ and ψn(s) → ψ(s) uniformly on finite intervals of R. Then [1], if 

k∈L1(R) and ψ , then k . More generally, ψs
n ⎯→⎯ ψkψ s

n ∗→∗

(3)   ψKψKψψ,KK s
nn

s
nn ∗→∗⇒→→− 01 . 

 We introduce a few further notations. For x ∈  R2 and A > 0 let B
.

A (x) denote the 
open ball BBA(x) := {y ∈  R y – x׀ :  A}. Let 2 > ׀

   ,,2,),()1(
04

:),( yyyy ≠∈−=Φ xRxxkHix  

so that  is the standard fundamental solution of the Helmholtz equation in RΦ 2. 
 
3    The Dirichlet Problem 
We first consider the following Dirichlet boundary value problem: 
 BVP1. Given f∈BC(R) and k∈C with Imk ≥ 0, Rek > 0, find u∈C(U )∩C2(U) 
satisfying 
 (i) the Helmholtz equation, ∆u + k2 u = 0 in U;  
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 (ii) for some a ∈  R, 

(4)   ;|)()1(|sup 2 ∞<+
∈

xux a

Ux

 (iii) u = f on Γ. 
 REMARK 3.1. Note that if u∈C2(U) satisfies (i) and (ii) then, by standard regularity 
arguments, u∈C∞(U) and a similar bound to (4) holds for all the derivatives of u, except 
in a neighbourhood of Γ. In particular, for all h > 0, 

(5)   .|)( grad)1(|sup 2 ∞<+
∈

xux a

hUx

 The above boundary value statement contains no radiation condition and is not uniquely 
solvable when k > 0: for example u(x) = sin(kx) satisfies BVPl with f = 0 when k > 0; 
though not when Im k > 0 for then (4) is violated. 
 To write down a particular solution of BVPl we introduce the Dirichlet Green's 
function, GD,h, for the half-plane Uh. For h > 0 define 
(6)  GD,h(x,y) := (x,y) - Φ Φ (x’h,y)  x,y ∈  hU  x ≠ y. 
 For Im k > 0 (for which GD,h(x, y) decays exponentially as )∞→− yx we can obtain  
a form of Green's representation theorem for u, the solution of BVPl (cf. [7]): applying 
Green's second theorem to u and GD,h(x,.) in the region Uh∩BR(0) \ Bc(x), and letting 
∈→. 0 and R → ∞ (and noting, from (4) and (5), that u and grad u have at most algebraic 
growth at infinity), we obtain that 

   ∫Γ ∈
∂

∂
=

h h
hD Uxdsu

xG
xu ,

2

, ),()(
),(

)( yy
y

y
, 

 (7)    ∫Γ ∈
∂
Φ∂

=
h hUxdsu

x
,

2
),()(

),(
2 yy

y
y

. 

 Defining, for h > 0, 

    ,,
)),,((

2:)(
2

R∈
∂

Φ∂
=

=

s
hs

sKh
0yy

y  

 (8)     ,,
2

)(
22

22)1(
1 R∈

+

+
= s

hs

hskHihk  

(7) can be written more compactly as 

(9)                                                uH = κH-h * uh,  H > h. 

From standard asymptotic properties of the Hankel function it is easy to establish that, for 
0 < h ≤ 1 and some constant C > 0, 

(10)    
⎪
⎩

⎪
⎨

⎧

≥

≤
+≤

− ,1,

,1
)(

2/3

,22

ssC

s
hs

hC
shκ  

while, for h ≥ 1, 

(11)    .,
)(

)(
4/322 Rs

hs
khImexpCh)s(h ∈

+
−

≤κ  
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Since the Hankel function, , is continuous in the quadrant Im z ≥ 0, Re z > 0, it )z(H )(1

1

follows that, for h > 0, Kh ∈  L1(R), and depends continuously in norm on h, and 

(12)  .)),((1,0),1(1 2/1 ∞→−=→= hhkImexphOhO hh κκ  

 Since it follows from (9) and (3) that ,00 →=→ hasfuu s
h

(13)    uh = Kh * f,  h > 0, 
i.e.  that 

(14)   ∫Γ ∈
∂
Φ∂

= .),()(
),(

2)(
2

Uxdsf
x

xu yy
y
y

 

 We have shown that if u satisfies BVPl and Im k > 0 then u is given by (14). The 
following converse result holds for all k with Im k ≥ 0, Re k > 0. 
 THEOREM 3.1. If f∈BC(R) then u, defined by (14), satisfies BVP1. 
 Proof. We have observed already that Kh depends continuously in L1(R) on h. Thus, 
and from (13), (2), and (12), we have that u∈C(U) and, for some constant C independent 
of  f, 

(15)   .fC)x(u)x( /sup
Ux ∞≤+ −

∈
21

21  

Further, from (10) and the standard jump relation for double-layer potentials [7], it is easy 
to see that u can be continuously extended from U toU , with limiting value u0  =  f . 
 It remains to show that u∈C2(U) and satisfies the Helmholtz equation. But choose 

{fn}  BC(R) such that each f⊂ n is compactly supported and fn  f, and define us→ (n) by 
(14) with f replaced by fn, so that 

(16)     .0,
)( >∗= hfu nh

n
h κ

Then, clearly, u(n), a standard double-layer potential, satisfies u(n)∈C2(U) and ∆ u(n)+ 
k2 u(n) = 0 in U. Further, using (10) and (11), we can see that u(n) converges to u uniformly 
on compact subsets of u, so that also u∈C2(U) and ∆u + k2 u = 0 in U.       
 We have shown in the case Im k > 0 that BVPl has precisely one solution, given by 
(14). In the case k > 0 in which (14) is not the unique solution of BVPl, it is sensible 
to select it as the "physically correct" solution since it satisfies the limiting absorption 
principle given in the next theorem. Temporarily, for the duration of this theorem, let u(λ) 
denote the solution of BVPl given by (14) when k = λ. 
 THEOREM  3.2. For k > 0 and all x∈U, u(k+ie) (x)→u(k)(x) as ∈→0+. 
 Proof. Temporarily denote Kh by  to indicate its dependence on k. Then )k(

hK )k(
hK ∈  

L1(R) depends continuously on k in Im k ≥ 0, Re k > 0 (note that (10) and (11) hold with 
the constant C independent of k provided that k is restricted to a compact subset of the 
first quadrant). But, from (13), ∞−≤∞− ∈+∈+ fuu k

h
ik

h
k

h
ik

h 1
)()()()( κκ , and the result 

follows.         
 Although it satisfies the above limiting absorption condition, the solution (14) for k > 0 
does not have all the characteristics we associate with a radiating wave. Specifically, the 
bound (15) suggests that u(x) may increase in magnitude as x2 → ∞. We now show that 
the bound (15) is sharp and construct boundary data f such that the solution u satisfies, 
for some C > 0, 21 /

h Chu ≥∞  , for all h ∈  N. 
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For h > 0 define gh∈  BC(R) with ∞hg = 1 by gh(s) = )s(K/)s(K hh , s∈R. Then 

    ∫
+∞

∞−
=∗ ,)()0( dssKhhh gκ  

and, since ,r,
r

~)r(H )( +∞→
π
21

1 , it follows from (8) that, as h→∞, 

(17)  ∫
∞+

∞−
=

+
∗ ,

)(2
~)0( 2/1

4/322 ch
hs

dshk
hh π

κ g  

where ∫
∞+

∞−

−+
π

= 4321
2

/)t(k:c dt. For a > 0 deiine Xa∈  BC(R) by 

   
⎪
⎩

⎪
⎨

⎧

+≥

+<<−+

≤

=

,1,0

,1,1

,,1

)(

as

asasa

as

sxα  

and, for n∈N, define Gn∈  BC(R) by Gn = gnXan, where an > 0 is chosen large enough 
so that 

(18)     ∫
−

≤
],/[

2/1 .
4
1)(

nanaR
n cndssκ  

Clearly, each Gn has compact support and 

(19)     ,
2
1)0( 2/1cnGnn ≥∗κ  

for all sufficiently large n. 
 Now define fn ∈  BC(R) by fn(s) = Gn(s - bn), s ∈  R, where the constants 
0 < b1 < b2 < … are chosen so that the supports of the functions fn do not overlap. Define  
f  BC(R) by  (Note that the method of construction makes ||f||∞=1.) ∈ .f

n

∞

=1
f n∑=

Then u, defined by (14) or (13) with this choice of  f, satisfies (4) only for α ≤ 2
1− . For un, 

the restriction of u to Γn, satisfies 
 

 

.))(()0(

))(()(

)(

nnnnn

nnnnn

nnnn

bffG

bffbf

bffu

−∗−∗=

−∗−∗≥

∗≥∞∗=∞

κκ

κκ

κκ

 

 
Since ||f - fn||∞ = 1 and the support of f - fn lies outside the interval [bn-an,bn+an], 
we have 

  ∫ +−
≤−≤−∗

],[\
2/1 ,

4
1)())((

nanbnanbR nnnnn cndttbbff κκ  

by (18). Thus,  and by (19),  21

4
1 /

n cnu ≥∞  for all sufficiently large n ∈  N. 

 We finish this section by pointing out that an expression for the solution (14) as a 
discrete spectrum of upward propagating plane waves and evanescent waves can be given 
in the case when f is quasi-periodic (as defined below). 
            Let F denote the operation of Fourier transformation on R, defined, for ψ ∈  L1(R), by 

    F ∫
+∞

∞−

− ∈= .ξds,esψψξ) is R)(
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From (8) and standard tables of Fourier transforms we can calculate K
)

h := F κh as 

(20)   ,),()(ˆ 22 Rkihexph ∈−= ξξξκ  

where Re ),k 22 ξ−  Im ),k 22 ξ− ≥ 0. 
 Given k > 0, we say that ψ , defined on U  or on some subset of U , is quasi-periodic 
with index α ∈  R and period L if  for every x, where e,ψ(x)e)Leψ(x iakL=+ 1 1 = (1,0) is 
a unit vector in the x1-direction.  Clearly ψ  is quasi-periodic if and only if  is 1iakxψ(x)e−

periodic in x1 . 
 Suppose now that f  BC(R) is quasi-periodic with index a and period L and u is ∈
defined by (14). Then f(s)e-iaks has a Fourier series convergent in at least an L2 sense, 

 
,)( /2∑

∈

− =
zm

Lims
m

ksi ecesf πα  

and, from (13), for h > 0, 
   ∫∑

+∞

∞−
∈

+−= dtktiLimtexptscsu h
zm

mh )/2()()( απκ

 
   .),/2()/2(ˆ RsiaksLimsexpakLmc h

zm
m ∈++= ∑

∈

ππκ

Thus, from (20), 
(21)                          ,)),(()( 21 Uuxxiexpcxu mm

zm
m ∈+= ∑

∈

βα

where 
(22)   ,k:,kL/m: mmm

222 α−=βα+π=α  
with Im ≥mβ  0. The series (21) is convergent absolutely and uniformly on compact subsets 
of U.  
 Conversely, if the series (21) is uniformly convergent in U  (in which case it is also 
absolutely convergent in U) then it is easy to see that the above derivation can be reversed 
to write u, given by (21), in the form (13), with f = u0 continuous and quasi-periodic. 

 While, for arbitrary f∈BC(R), (4) need not hold for a > - 
2
1 , we see from (21) that, 

if f is continuous and quasi-periodic, then (4) holds with a = 0, i.e. u is bounded in U . 
 
4 The Impedance Boundary Value Problem 
We consider next the boundary value problem in the half-plane U with the impedance 
boundary condition 

(23)      ,fuik
x
u

=β+
∂
∂

2

  

on Γ. We consider in this section only the case k > 0, for which a radiation condition 
is required. To obtain a radiation condition we point out that, in each half-plane Uh, u 
satisfies a Dirichlet problem with boundary data uh. It makes sense then to require that, 
for some h > 0 and  BC(R), ϕ ∈

(24)    ∫Γ ∈ϕ
∂

Φ∂
=

n
,hUx),y(ds)y(

y
)y,x()x(u

2
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since, as shown in Section 3, with the choice ϕ  = uh, (24) is the unique solution of the 
Dirichlet problem in Uh satisfying the limiting absorption principle given in Theorem 3.2.             
 The radiation condition (24) is a generalisation of the usual radiation condition utilised 
in the study of plane wave diffraction by one-dimensional periodic gratings [11, 10], when 
u is quasi-periodic. In the case when u is quasi-periodic, the solution (23) can be rewritten 
(see (21)) to show that, for some set of coefficients {cm : m ∈  Z}, 
(25)    ,21 )),((exp)( h

Zm
mmm Uuxxicxu ∈+= ∑

∈

βα

with αm, βm given by (22), which is precisely the usual radiation condition. Conversely, 
if the radiation condition (25) holds for some h = h* > 0, then the series (25) converges 
uniformly in Uh, for all h > h* and (see Section 3) (24) holds, with ϕ  quasiperiodic, for all 
h > h*.  
 Let R(U):= )}.U(Cx/u:)U(C)U(Cu{ ∈∂∂∩∈ 2

2  The following is the impedance 
boundary value problem that will be considered: 
 BVP2. Given f, β∈BC(R) and k > 0, find u∈R(U) satisfying 
 (i) ∆u + k2 u = 0 in U; 
 (ii) for some α ∈  R, 

(26)   
Ux

;)x/)x(u)x(u()x(sup
∈

∞<∂∂++ α
221  

 (iii) ∂u(x)/ ∂x2 + ikβ(x)u(x) = f(x), for all x ∈  Γ; 
 (iv) the radiation condition (24), for some h > 0 and φ∈BC(R). 
 
4.1     An Integral Equation Formulation 
To prove uniqueness and existence of solution of BVP2, and as a tool for numerical 
computation, we reformulate BVP2 as a boundary integral equation. The fundamental 
solution of the Helmholtz equation which satisfies BVP2 with f ≡ 0 and  β ≡ 1 (and a 
Dirac delta function inhomogeneity in the Helmholtz equation) is given by [5] 

(27)    ),(ˆ),(),(),( || yyyy −+Φ+Φ= xpxxxG

where 

(28)  ,Ux,dt
))(it(it

)it((ete:)x(P̂
txk/xik

∈
γ+−−
+γ+

π
= ∫

∞
−−

0 2

21

12
11  

with .x/x2=γ  

 It is shown in [5] that )U(CP∈
)

and it is easy to see that })0{( \UCP ∞∈
)

 and satisfies 
the Sommerfeld radiation and boundedness conditions in U  [2, Lemma 3.6.5]. Further [6], 
given C > 0, 
(29)  ,as)(0),(),,(grad 2/3 ∞→−−= − yyyyy xxxGxG  

uniformly in x,y ∈U , with 0 ≤ x2,y2 ≤ C. 
 This rapid rate of decrease in (29) is very important in the arguments which follow and 
holds only provided the vertical coordinates, x2 and y2, are restricted as indicated. (If x 
and y are unrestricted then G(x,y) = O ,)( 2/1 ∞→−− − yy xasx  the same behaviour 
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as that of Φ .) In physical terms the rapid rate of decay (29) is due to the energy-absorbing 
nature of the boundary condition (23) when Re β > 0. 
 To derive the boundary integral equation, suppose that u satisfies BVP2 (in particular 
(24) for some h > 0) and take x∈U. Choose h1, h2 such that 0 < h1 < x2 < h2 and 
h2 > h, and apply Green's second theorem in the bounded region SA,:= {x∈Uh1\ U h2: 
|x1| < A} \ (x)B∈ to G(x,.) and u to obtain 

  ∫∂ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=
cAS

ds
n

xG
uxG

n
u

,
),(

)(
),(

)(),()(0 y
y
yyyy  

where n is the outward-directed normal on ∂SA,∈ . Letting ∈→ 0 and A → ∞ (note that u 
and (see Remark 3.1) grad u are bounded in Uh,1\Uh 2 so that the integrals over the vertical 
sides of ∂SA,∈  vanish as A → ∞) we obtain that 
 

(30)        ∫ ΓΓ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=
2,01,

),(
)(

),(
)(),()()(

hh
ds

n
xG

uxG
n
uxu y

y
yyyy  

Note that (26) and (29) ensure that the integrand in (30) is absolutely integrable and, since 
also G(x,.) }){( x\UC∞∈ and u∈R(U), it follows that the integral over  in (30) 1,hΓ

depends continuously on h1 for 0 ≤ h1 < x2. Thus we may set h1 = 0 in (30) and, utilising 
the impedance boundary conditions satisfied by u and G, we obtain that 

   ∫Γ +−−= )()()()1)(()(,()( yyyyy dsfuikxGxu β

(31)  ∫Γ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

2,
).(

)(
),(

)(),()(
h

ds
n

xG
uxG

n
u y

y
yyyy  

 To complete the derivation we use the radiation condition to show that the integral 
over  vanishes. As in the proof of Theorem 3.1, we choose 

2hΓ ⊂}{ nϕ  BC(R) such that 

each  is compactly supported and , and define unϕ ϕϕ s
n →

(n) by (24) with ϕ  replaced by 

nϕ . Then, for each n, the double-layer potential u(n)∈C2(Uh) and satisfies the Helmholtz 
equation and Sommerfeld radiation and boundedness conditions, so that, applying Green's 
second theorem to G(x,.) and u in Uh2 ∩BBR(0)⊂Uh, and letting R → ∞ we obtain 

(32) ∫Γ =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

2,

)(
)(

.0)(
)(

),(
)(),()(

h

n
n

ds
n

xG
uxG

n
u y

y
yyyy  

Now, by (15), the functions u(n) are uniformly bounded on Uh \ UH for every H > h2, 
and therefore so are the functions grad u(n), n ∈  N, on 

2hΓ . Further, u(n) converges to 
u uniformly on compact subsets of Uh (and therefore so also does grad u(n) converge to 
grad u). Thus, and bearing in mind (29), it follows that the integral in (32) converges to 
the same integral with u(n) replaced by u as n→ ∞, and thus the intergral over  in (31) 2hΓ
vanishes and 
(33)    ∫Γ ∈−−= .),())()()1)(()(,()( UxdsfuikxGxu yyyyy β

Since, for y ∈  Γ, G(x,y) = 2Φ (x,y)+ P
)

(x-y), and P
)
∈C(U ), it is easy to see from standard 

properties of single-layer potentials, and bearing in mind (29), that the right hand side of 
(33) is continuous in U , so that (33) holds also for x ∈  Γ. We have shown the following 
result: 
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 THEOREM 4.1. If u satisfies BVP2 then 

(34)  ∫Γ ∈−−= .),()()()1)(()(,()( UxdsfuikxGxu yyyyy β  

  To establish the converse result, note that we have already observed that, if u is defined 
by (34) with u0 ∈  BC(R} then u ∈  C(U ). To see most of the rest of the result, note that 
(34)can be written as 
(35)   ,0),)1(( 0 >−−∗= hfuiku hh βλ  
 where Lhλ ∈ 1(R) is defined, for h ≥ 0, by hλ (s) = G((s,h),0), s  R. Now, (see [5, ∈

equations (21) and (25)]), hλ
)

:= F hλ  is given by 

 (36)                             ,,
kk

)kih(i)(ˆ
h Rexp

22

22

∈ξ
+ξ−

ξ−
=ξλ  

with andkthatsokforkik hh ,ˆˆ, 0
2222 λλξξξ =≥−=−  

(37)    .0,0 >∗= hhh λκλ  
Thus, from (35), 
(38)  .0))1(( ,00 >∗=−−∗∗= hufuiku ohhh κβλκ  
It follows from Theorem 3.1 that u, defined by (34), satisfies the Dirichlet BVP1 with 
boundary data u0 ∈  BC(R), so that we have shown that u satisfies all the conditions of 
BVP2, except that ∂u/∂x2 ∈  C(U ) and the impedance boundary condition. 
 To show the impedance condition we make use of the impedance condition satisfied by 
G, contained in the relationship [5, equation (67)], 

(39)   .0,,0),0(
)(ˆ

2
≠∈=+

∂
∂ yyy
y
y

UikG
P

 

Differentiating (34) and noting that, for x ∈  U, y∈  Γ, using (39), 
 

   
222

)(ˆ),(),(
x
xP

x
x

x
xG

∂
−∂

+
∂
Φ∂

=
∂

∂ yyy
 

    ),,(
),(

2
2

y
y
y

xikG
x

−
∂
Φ∂

−=  

we obtain, in convolution form, that 
  ,0),)1(()(/ 0 >−−∗+−=∂∂ hfuikikhu hhh βλκ , 
(40)   ,0),( 0 >−∗= huikfh βκ  
by (37) and (35). Thus, by Theorem 3.1, ∂u/∂x2 satisfies the Dirichlet BVP1 with boundary 
data f – ikβu0, and so, in particular, ∂u/∂x2 ∈  C(U) and satisfies (23). We have shown 
the following converse of Theorem 4.1: 
 THEOREM 4.2. If u satisfies (34) and u0 ∈  BC(R) then u satisfies BVP2. 
 As part of the proof of the above theorem we have shown that u, given by (34), satisfies 
BVP1 with boundary data u0. It follows that u satisfies the bound (15) so that we have 
also the following result: 
 COROLLARY 4.1. If u satisfies BVP2 then, for some constant C > 0 independent of β 
and f, 

    .
uC)x(u/)x(sup

Ux ∞
≤−+

∈ 0
21

21
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4.2     Uniqueness and Existence Results 
In a future paper we will establish uniqueness and existence of solution in the general case 
for BVP2 (see [3] for a proof of existence given uniqueness in the case of L∞ boundary data). 
For the present we note that, from Theorems 4.1 and 4.2, BVP2 and (34) are equivalent, 
and that if u satisfies (34) then uo satisfies the boundary integral equation, in operator 
form, 
(41)                                             u0 = F+Ku0 , 

where F∈BC(R) is denned by F := 0λ * f, and K : BC(R) → BC(R) is defined by 
.BC)ψψ),((βikλKψ (R)10 ∈−∗=  

Now, by a standard Neumann series argument [7], (41) has exactly one solution uo∈  BC(R) 
if K  < 1, and we have 0u  ≤ (1 - K )-1 .F ∞ Since, by (2), | |F | |∞≤ ∞λ f10  

and ∞−≤ 110 βλK have, combining this result with Theorems 4.1 and 4.2 and 
Corollary 4.1, the following existence and uniqueness result. 
 THEOREM  4.3. If 1110 <∞−βλ   then BVP2 has exactly one solution and, for 
some constant C > 0 independent of β and f, 
 

   .
1101

)()1(sup 2/1
2

∞−−
∞≤+

∈

−

βλ

fC
xux

Ux
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