88 research outputs found

    Incorporating productive use into water systems in urban Nigeria

    Get PDF
    Recent studies have shown that millions of lowincome households use their limited water supplies for activities such as productive uses as well as domestic needs. Such productive uses of water may not really thrive or even take off unless the required quantity of water is available. Such activities often generate numerous benefits to households involved. An understanding of how productive uses of water could successfully be mainstreamed into urban water systems in Nigeria was studied. Water supplies to households by the water utilities in Nigeria have traditionally been confined within what is known as domestic water needs. The quantity of water supplied has often been meant to cover basic needs such as drinking, cooking and personal sanitation needs etc. However this has not been a true reflection of the use of this limited amount of water supplied. A social survey was made of households and institutions in Owerri, Nigeria; where productive uses of water is already real, particularly in activities such as home gardening, horticulture and livestock rearing etc. In view of the persisting problem in water supplies in Nigeria, where water utilities such as the Imo State Water Corporation (ISWC) is still enmeshed in intermittent supplies; the paper explores the implications for households, especially the productive water users; alternative water suppliers and the government. The aim is to identify how supply sustainability for these activities could be maximized as a veritable tool vital in the fight against poverty. Given the importance of the urban water system to low income productive water users, a functional and efficient utility as well as an appropriate policy framework has been identified as being imperative in order to maximize income and employment benefits for urban productive water users

    African Water: Supporting African involvement in the EU Framework Programme.

    Get PDF
    Water researchers in developing countries have yet to take full advantage of the funding and collaborative research opportunities presented by the EU Framework Programme. There are a variety of reasons for this, such as insufficient information and a lack of previous experience. The African Water initiative aims to increase the involvement of African water researchers through a range of activities including communication and dissemination, capacity building and development, and complementary initiatives. The project has demonstrated that there is a demand for such sector-specific support activities. However, African Water is a small component of a much larger process of partnership between the developed and the less-developed countries of the world, involving many different European and African organisations working across political, institutional and technical domains, and complementing the wide range of actions already being undertaken

    Irrigation distribution networks' vulnerability to climate change

    Get PDF
    Climate change will lead to changed demands on ex isting irrigation systems. This paper presents a methodology for investigating the performance of irrigation networks under climate change, and applies this to an irrigation network in Cordoba , southern Spain. The methodology uses emission scenarios (A2 and B2) developed by the Interg overnmental Panel on Climate Change. A global climate model (HadCM3) is used with downscali ng to predict climate variables for 2050 and 2080 under the emission scenarios. Euro pean agricultural policy scenario s are used to predict future cropping patterns. Irrigation water requirements are th en estimated for various combinations of these climate and cropping pattern scenarios, and the perfo rmance of the irrigation network is evaluated in terms of the equity and adequacy of pressure at the outlets, using EPANET. The methodology was applied to the Fuente Palmera irrigation district, which supplies water on-demand for drip irrigation. The results show that climate change would have a major impact on network performance with the existing cropping pattern, but that expected chang es in cropping pattern would reduce this impact

    First High-Speed Video Camera Observations of a Lightning Flash Associated With a Downward Terrestrial Gamma-Ray Flash

    Get PDF
    In this paper, we present the first high-speed video observation of a cloud-to-ground lightning flash and its associated downward-directed Terrestrial Gamma-ray Flash (TGF). The optical emission of the event was observed by a high-speed video camera running at 40,000 frames per second in conjunction with the Telescope Array Surface Detector, Lightning Mapping Array, interferometer, electric-field fast antenna, and the National Lightning Detection Network. The cloud-to-ground flash associated with the observed TGF was formed by a fast downward leader followed by a very intense return stroke peak current of −154 kA. The TGF occurred while the downward leader was below cloud base, and even when it was halfway in its propagation to ground. The suite of gamma-ray and lightning instruments, timing resolution, and source proximity offer us detailed information and therefore a unique look at the TGF phenomena

    IPSE, an abundant egg-secreted protein of the carcinogenic helminth Schistosoma haematobium, promotes proliferation of bladder cancer cells and angiogenesis

    Get PDF
    Background Schistosoma haematobium, the helminth causing urogenital schistosomiasis, is a known bladder carcinogen. Despite the causal link between S. haematobium and bladder cancer, the underlying mechanisms are poorly understood. S. haematobium oviposition in the bladder is associated with angiogenesis and urothelial hyperplasia. These changes may be pre-carcinogenic events in the bladder. We hypothesized that the Interleukin-4-inducing principle of Schistosoma mansoni eggs (IPSE), an S. haematobium egg-secreted “infiltrin” protein that enters host cell nuclei to alter cellular activity, is sufficient to induce angiogenesis and urothelial hyperplasia. Methods: Mouse bladders injected with S. haematobium eggs were analyzed via microscopy for angiogenesis and urothelial hyperplasia. Endothelial and urothelial cell lines were incubated with recombinant IPSE protein or an IPSE mutant protein that lacks the native nuclear localization sequence (NLS-) and proliferation measured using CFSE staining and real-time monitoring of cell growth. IPSE’s effects on urothelial cell cycle status was assayed through propidium iodide staining. Endothelial and urothelial cell uptake of fluorophore-labeled IPSE was measured. Findings: Injection of S. haematobium eggs into the bladder triggers angiogenesis, enhances leakiness of bladder blood vessels, and drives urothelial hyperplasia. Wild type IPSE, but not NLS-, increases proliferation of endothelial and urothelial cells and skews urothelial cells towards S phase. Finally, IPSE is internalized by both endothelial and urothelial cells. Interpretation: IPSE drives endothelial and urothelial proliferation, which may depend on internalization of the molecule. The urothelial effects of IPSE depend upon its NLS. Thus, IPSE is a candidate pro-carcinogenic molecule of S. haematobium. Summary Schistosoma haematobium acts as a bladder carcinogen through unclear mechanisms. The S. haematobium homolog of IPSE, a secreted schistosome egg immunomodulatory molecule, enhances angiogenesis and urothelial proliferation, hallmarks of pre-carcinogenesis, suggesting IPSE is a key pro-oncogenic molecule of S. haematobium

    Antireflux Transoral Incisionless Fundoplication Using EsophyX: 12-Month Results of a Prospective Multicenter Study

    Get PDF
    BACKGROUND: A novel transoral incisionless fundoplication (TIF) procedure using the EsophyX system with SerosaFuse fasteners was designed to reconstruct a full-thickness valve at the gastroesophageal junction through tailored delivery of multiple fasteners during a single-device insertion. The safety and efficacy of TIF for treating gastroesophageal reflux disease (GERD) were evaluated in a prospective multicenter trial. METHODS: Patients (n = 86) with chronic GERD treated with proton pump inhibitors (PPIs) were enrolled. Exclusion criteria included an irreducible hiatal hernia > 2 cm. RESULTS: The TIF procedure (n = 84) reduced all hiatal hernias (n = 49) and constructed valves measuring 4 cm (2-6 cm) and 230 degrees (160 degrees -300 degrees ). Serious adverse events consisted of two esophageal perforations upon device insertion and one case of postoperative intraluminal bleeding. Other adverse events were mild and transient. At 12 months, aggregate (n = 79) and stratified Hill grade I tight (n = 21) results showed 73% and 86% of patients with >or=50% improvement in GERD health-related quality of life (HRQL) scores, 85% discontinuation of daily PPI use, and 81% complete cessation of PPIs; 37% and 48% normalization of esophageal acid exposure; 60% and 89% hiatal hernia reduction; and 62% and 80% esophagitis reduction, respectively. More than 50% of patients with Hill grade I tight valves had a normalized cardia circumference. Resting pressure of the lower esophageal sphincter (LES) was improved significantly (p < 0.001), by 53%. EsophyX-TIF cured GERD in 56% of patients based on their symptom reduction and PPI discontinuation. CONCLUSION: The 12-month results showed that EsophyX-TIF was safe and effective in improving quality of life and for reducing symptoms, PPI use, hiatal hernia, and esophagitis, as well as increasing the LES resting pressure and normalizing esophageal pH and cardia circumference in chronic GERD patients.Journal ArticleMulticenter StudyResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore