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IRRIGATION DISTRIBUTION NETWORKS’ VULNERABILITY TO CLIMATE 

CHANGE 

 

Pérez Urrestarazu, L. 1; Smout, I. K.2; Rodríguez  Díaz, J. A.3; Carrillo Cobo, M.T.4 

 

Abstract 

Climate change will lead to changed demands on existing irrigation systems. This paper presents a 

methodology for investigating the performance of irrigation networks under climate change, and 

applies this to an irrigation network in Cordoba, southern Spain. The methodology uses emission 

scenarios (A2 and B2) developed by the Intergovernmental Panel on Climate Change. A global 

climate model (HadCM3) is used with downscaling to predict climate variables for 2050 and 2080 

under the emission scenarios. European agricultural policy scenarios are used to predict future 

cropping patterns. Irrigation water requirements are then estimated for various combinations of these 

climate and cropping pattern scenarios, and the performance of the irrigation network is evaluated in 

terms of the equity and adequacy of pressure at the outlets, using EPANET. The methodology was 

applied to the Fuente Palmera irrigation district, which supplies water on-demand for drip irrigation. 

The results show that climate change would have a major impact on network performance with the 

existing cropping pattern, but that expected changes in cropping pattern would reduce this impact.  
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Introduction and background 

 

The future is characterized by uncertainty and change. In the agriculture sector, there are multiple 

factors which capture the dominant dimensions of this change. Some of them can be classified as 

independent external drivers such as macro-economic factors, agricultural trade and policy, and 

consumers and markets. Others might be secondary drivers such as rural development and agro-

environmental policy, the structure of farming and farmer motivation (Morris et al. 2005). But in the 

longer term, the potential significant effect of climate change is nowadays recognised worldwide. The 

impact of climate and global socio-economic change will depend on environmental conditions as well 

as the capacity to adapt to change. 

 

Vulnerability assessment is an increasingly significant aspect of research on impacts and adaptation 

to climate variability and change. The water resources sector, in coping with current climate 

variability and anticipating future vulnerabilities to climate changes, represents an important example 

of the challenges that come with integrating multiple elements in a vulnerability assessment (Dow et 

al. 2007). Because of the predicted reduction in available water resources (Iglesias et al. 2005), the 

change in annual distribution of rainfall (Moreno 2005) and in crop water requirements (Mínguez et 

al. 2005), there will be an impact on the performance of irrigation systems. They will have to be 

designed for longer and higher peaks in irrigation water demand which may cause problems in some 

of the networks already working (Rodríguez Díaz et al. 2007a). These uncertainties as to how 

irrigation systems will have to adapt to these changes are issues that water authorities are compelled to 



 

address (De Wrachien and Ragab 2004). In practice, changes in technology are likely to reduce or 

outweigh the impact of climate change in addition to some measures to promote adaptation as 

improvement of water use efficiency, appropriate water pricing, management and technology in 

irrigated areas (FAO 2002). 

 

At the present time, climate change impact on agriculture has become a recurrent issue and many 

studies have been done (Rosenzweig et al. 1995; Cuculeanu et al. 1999; Guereña et al. 2001;  Parry et 

al. 2004; Tubiello and Fischer 2007; Meza et al. 2008), some of them related to impact on irrigation 

(Allen et al. 1991; McCabe and Wolock 1992; Doll 2002; De Silva et al. 2007; Fischer et al. 2007; 

Rodríguez Díaz et al. 2007a; Yano et al. 2007). However, the effect on irrigation distribution networks 

has not been tackled. Therefore, the main objective of this paper is the study of the vulnerability of 

irrigation systems to climate change. With this purpose a methodology to assess the possible effects of 

future changes on irrigation networks has been developed and applied in Fuente Palmera irrigation 

district (Spain).    

 

Climate and socio-economic change scenarios 

 

A common approach to studying changes in global situation over the time is to attempt to define a 

number of possible futures, called scenarios. Long-term scenarios are an indispensable tool for the 

assessment of major uncertainties as well as of the consequences of alternative policy actions for 

global challenges, ranging from the implications of resource depletion to environmental issues such as 

climate change (Grübler et al. 2007). Abildtrup et al. (2006) describe a procedure for defining such 

scenarios for agriculture in terms of population, economic, technical, climate and social changes. The 

IPCC (Intergovernmental Panel on Climate Change) published a set of scenarios in 2000 for use in the 

Third Assessment Report (Special Report on Emissions Scenarios - SRES). The SRES scenarios were 

constructed to explore future developments in the global environment with special reference to the 

production of greenhouse gases and aerosol precursor emissions.Their starting point was four narrative 



 

storylines, describing different ways in which the world population, economics, technology, and (non-

climate) policies may evolve over the coming decades. These storylines provide a framework within 

which to develop socio-economic scenarios as a basis for impact, adaptation and vulnerability 

assessments (Arnell et al. 2004). Therefore, four SRES storylines represent different world futures, 

which describe the ways in which global population, economies and non-climate policies may evolve 

over the coming decades. Even though the storylines occupy a multidimensional space and no simple 

metric can be used to classify them, it has been useful to describe the scenarios using two-dimensional 

space. The first dimension designates a more economic (A scenarios) or a more environmental (B 

scenarios) orientation and the second dimension a more global (1) or a more regional (2) orientation. 

Accordingly, the storylines are termed A1, A2, B1, and B2 (Nakicenovic et al. 2000): 

 

1. A1: a future world of very rapid economic growth, global population that peaks in mid-

century and declines thereafter, and rapid introduction of new and more efficient 

technologies.  

2. A2: a very heterogeneous world with continuously increasing global population and 

regionally oriented economic growth that is more fragmented and slower than in other 

storylines.  

3. B1: a convergent world with the same global population as in the A1 storyline but with 

rapid changes in economic structures toward a service and information economy, with 

reductions in material intensity, and the introduction of clean and resource-efficient 

technologies.  

4. B2: a world in which the emphasis is on local solutions to economic, social, and 

environmental sustainability, with continuously increasing population (lower than A2) and 

intermediate economic development. 

 

For this study, A2 and B2 scenarios were considered intending to bracket the most salient scenario 

variables of demographic and economic development at the high and the intermediate side (scenarios 



 

A2 and B2 respectively) (Grübler et al. 2007). The B2 scenario can be considered as an intermediary 

scenario, characterized by ‘dynamics as usual‘ rates of change (Riahi et al. 2007). 

 

The publication of the special report on emission scenarios, the so-called SRES scenarios, 

facilitated the development of socio-economic scenarios that are consistent with the emission 

scenarios used as input in the climate models. Future agricultural and water scenarios concerning 

water policy (WFD) and the Common Agricultural Policy (CAP) were developed in the WADI 

(WAter Demand Integration) project which focused on changes in EU agricultural and water policy 

affecting economic, social and environmental performance of irrigation in the European partner 

countries (Bazzani et al. 2005). Hence, four Foresight type scenarios were created in the WADI 

project and linked to agricultural policy scenarios (Morris and Vasileiou 2003):  

 

• World Markets (WM) are characterised by an emphasis on private consumption and a highly 

developed and integrated world trading system. 

• Global Sustainability (GS) is characterised by more pronounced social and ecological values, 

which are evident in global institutions and trading systems. There is collective action to address social 

and environmental issues. Growth is slower but more equitably distributed compared to the World 

Markets scenario. 

• Provincial Enterprise (PE) is characterised by emphasis on private consumption but with 

decisions made at national and regional level to reflect local priorities and interests. Although market 

values dominate, this is within national/regional boundaries. 

• Local Stewardship (LS) is characterised by strong local or regional governments which emphasise 

social values, encouraging self-reliance, self sufficiency and conservation of natural resources and the 

environment. 

 

Linking with the SRES framework then allows the climate and socio-economic scenarios to be 

combined in an internally consistent way, as the underpinning socio-economic assumptions drive 

greenhouse gas emissions and therefore climate change. Where a climate change scenario was coupled 



 

with its corresponding socio-economic scenario, these are given as A1+WM, A2+PE, B1+GS and 

B2+LS (Audsley et al. 2006). 

 

Predictions on future cropping patterns 

 

Any holistic overview of future crop yields must consider all aspects of environmental and socio-

economic changes (Huntingford et al. 2005). Changes in crop sown areas are explained as a function 

of the driving factors determining the crop utilities, which influence the crop choices of those involved 

(Rounsevell et al. 2005; Wu et al. 2007). In general, these driving factors include biophysical factors 

(e.g. temperature, rainfall, soil physicochemical properties and topography) (Gobin et al. 2002), 

demographic factors (e.g. rural population density), socio-economic factors (e.g. farming income per 

capita, agricultural mechanization, road accessibility and international trade price) (Müller and Zeller 

2002) and technological factors (e.g. irrigation, fertilizers and pesticides). For this reason, it is difficult 

to make predictions on possible cropping patterns in the future. There are few studies to determine 

future crop distributions and some organizations have tried to give an overview of global tendencies in 

agriculture (FAO 2003). Gill et al. (2006) presented a more regional-oriented research about the 

potential distribution of bioenergy crops in Europe based on the SRES scenarios. They predict a 

decline in maize and wheat especially in Spain and increase of olive trees and sunflower. Berbel et al. 

(2005) present possible future cropping patterns in the Guadalquivir basin in Spain, taking into 

account the WADI scenarios. 

 

Methodology 

 

Predicting a future situation is always difficult, and even more when there are so many influencing 

variables. This study considers changes in climate variables and in crop patterns. Climate change data 

derived from the Had-CM3 Global Climate Model (GCM) has been used. The HadCM3 is a coupled 



 

Atmosphere-Ocean General Circulation Model (AOGCM) developed at the Hadley Centre for Climate 

Prediction and Research (Gordon et al. 2000; Pope et al. 2000). This model has a spatial resolution of 

2.5° x 3.75° (latitude by longitude); this produces a grid of 72 x 96 cells, resulting in a grid resolution 

of 280 km x 320 km across Spain. In order to provide information on possible changes in global 

climate, the GCM is forced to consider future scenarios where elevated levels of atmospheric CO2 

concentration are assumed depending on differing levels of anthropogenic activity. This information is 

given by the SRES scenarios already described. For reducing the pixel size, the changes predicted by 

the HadCM3 model must be applied to a more detailed ‘baseline’ climatology. This is a 10’ 

latitude/longitude dataset containing mean monthly surface climate over global land areas, excluding 

Antarctica, for the period 1961-1990 (New et al. 2002). The SRES scenarios have been used to 

generate perturbed climatic datasets in this baseline for future defined time periods. Using krigging 

interpolation techniques, the relative changes predicted by the HadCM3 model for precipitation, solar 

radiation, wind speed and relative humidity have been applied to the baseline values for each pixel in 

the study area. For temperature absolute values were computed instead of relative changes. This 

methodology has already been applied for downscaling climate datasets by de Silva et al. (2007) and 

Rodríguez Díaz et al. (2007a). However, the baseline and HadCM3 climate change datasets do not 

contain reference evapotranspiration (ET0) values; a technique developed by Hess and Knox (2003) 

was therefore used to calculate mean monthly ET0 for each pixel for the baseline and each future 

SRES scenario. For this procedure, the FAO Penman–Monteith equation was used to calculate ET0 for 

each grid pixel, since this has been recognised as the international standard method of ET estimation 

(Smith 2000).  

 Once the future climate variables are obtained, Figure 1 shows the methodology applied. In order 

to foresee crop patterns, the SRES scenarios have been used in addition with the WADI Agricultural 

Policy scenarios. Three time horizons have been selected: the baseline, constructed as an average of 

data from 1996 to 2007; and the projected years 2050 and 2080 as future situations. Therefore rainfall 

and ET0 data were obtained for baseline, A2 2050, B2 2050, A2 2080 and B2 2080 for a case study 

irrigation district in southern Spain. Crop patterns for baseline, A2+PE and B2+LS have been 



 

produced using the trends of crop areas from 1996 to 2007 and the available studies on crop 

predictions (FAO 2003; Berbel et al. 2005; Gill et al. 2006). 

Figure 1. Flow chart showing methodology 

 

CROPWAT model (Clarke et al. 1998) was applied to obtain crop water requirements, irrigation 

requirements and maximum flow required using the rainfall and ET0 data and the crop patterns 

estimated for each scenario. This model has already been applied to determine the impacts of potential 

climate change on daily and total crop water requirements (Doria et al. 2006) in conjunction with the 

climate change scenarios. The irrigation network has been modelled in EPANET (Figure 2), one of the 

most widespread hydraulic simulation models. EPANET was developed by EPA's Water Supply and 

Water Resources Division and it performs extended-period simulation of the hydraulic and water 

quality behavior within pressurized pipe networks (Rossman 2000). The inputs are the topology and 

characteristics of the network, the demand pattern in an average day and the maximum flows required 

in each outlet obtained from the CROPWAT model. After running the simulations in all the situations 

(baseline, A2 2050, B2 2050, A2 2080 and B2 2080), key variables are obtained for calculating 

selected indicators as described below. 

Figure 2. Model of the network in EPANET for the baseline 

 

Methodology constraints  

The main limitation of this methodology is the scale effect within the climate change model, since 

HadCM3 provides a bigger scale than the smaller baseline, interpolation techniques have been used. 

This interpolation may distort the results. Anyway, as long as regional models take as inputs the 

outputs of the GCM, the general trends in irrigation requirements are supposed to be very similar. 

Also, this research has been done for an average year and interannual variability can aggravate the 

situation. Actually, more frequent droughts are predicted, what could have an even stronger impact on 

water resources availability, irrigation requirements and therefore on irrigation water demand 

(European Environment Agency 2007). The analyses described here have considered only one GCM 



 

(HadCM3) and only two SRES scenarios. The climate change model can have significant influence on 

the results mostly after the mid-century where predicted impacts under different socioeconomic 

scenarios start to diverge significantly (Hadley Centre 2005). For example, the ECHAM4 scenario 

predicts a warmer but wetter climate, which makes the increases in global irrigation requirements for 

the entire world approximately 50% smaller than under the HadCM3 scenario (Doll 2002). Also water 

resources availability may considerably differ from one GCM to others (Arnell, 2004). The 

methodology necessarily assumes that crop practices are unchanged, ignoring the adaptations that will 

inevitably occur. Although they are based in previous analysis where many factors were taken into 

account, crop pattern predictions may be also inaccurate due to the general uncertainty about policy, 

market and farmer decisions trends in the future. 

 

Network performance  

 

Neri (1998) established that the global performance of an irrigation system comes from how the 

service responds to farmer’s requirements, taking into account the limits imposed by policies and the 

resource availability. So when designing or managing an irrigation system, the main constraint is that 

the required flows should be supplied to water users with adequate pressure (Farmani et al. 2007). For 

that reason, changes in these required flows due to increase of demand because of climate change 

could affect the whole performance of the network. Cropping patterns are highly influenced by the 

ability of the system to avoid uncontrolled situations of water stress, especially for high value crops 

(Clemmens and Molden 2007), so flexibility of service in the network is needed to cope with the 

changes in farmers’ requirements.  

 

In on demand systems, the farmer has water available whenever he wants so the limitations on 

irrigation depend on the given flow and pressure in the outlets. If the system is overloaded, farmers 

may be obliged to cut off the supply and postpone irrigation (Rodríguez Díaz et al. 2007b). Therefore, 

these systems require a higher distribution capacity which makes them much more expensive (Alandi 



 

et al. 2001). Errors in the estimation of the future demand may lead to lower quality in the provided 

service. Hence, this is a new challenge for service quality in irrigation water distribution systems and it 

is essential to have information of the future network performance. 

 

In order to study the future behavior of the network, two performance indicators are used.  Each 

indicator is a quantitative measure of an aspect of irrigation performance standards which helps to 

evaluate and monitor irrigation (Alegre et al. 2000). They are ratios that relate variables in such a way 

that a large amount of information can be reduced to a single number (Rodríguez Díaz et al. 2008). 

 

1. Pressure equity (PEq) 

This indicator represents how pressure is distributed between outlets in the network using the 

Interquartile ratio (Abernethy 1986; Bird 1991; Bhutta and Van der Velde 1992; Bos et al. 1994; 

Gorantiwar and Smout 2005): 

bq

pq

P

P
PEq =       (1) 

where pqP  is the average pressure in the poorest quarter and bqP  is the average pressure in the best 

quarter, taking into account all the network’s checkpoints. 

 

2. Simulated/assigned pressure ratio (Ps/a) (Pérez Urrestarazu et al. 2009) 

This indicator the pressure obtained in the simulations with the one assigned in the outlets (Pérez 

Urrestarazu 2007): 
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where Ps is the simulated pressure measured in the checkpoint and Pa is the design pressure in the i 

checkpoint. When Ps/a < 1, it means that this outlet will be working below the required pressure. 

 

In addition, the values of maximum pumped flow and power requirements are determined.  



 

 

Irrigation district description 

 

This methodology has been implemented in Fuente Palmera, an irrigation district located in 

Cordoba (southern Spain) in the Guadalquivir river basin (Figure 3). In this basin, increases of around 

16-20 % in the crop water requirements are predicted by the 2050s due to climate change. The 

irrigation seasons are also predicted to be longer than at present due to the lower rainfall in April to 

June (Rodríguez Díaz et al., 2007a).  

Figure 3. Fuente Palmera irrigation district location 

 

Fuente Palmera irrigation district has 5611 ha with 85 group of fields or sectors devoted to a wide 

range of crops (mainly citruses, cereals and olive trees). It is covered by a well-maintained pressurized 

network designed to provide irrigation on demand. In recent years, the distribution system was 

upgraded, improving the network and changing the main irrigation method from sprinkler to drip 

irrigation. The water is taken from the Guadalquivir river and pumped thanks to a pumping station 

with a maximum flow capacity of 6 m3/s giving pressure to the system. The main network is formed 

by 37992 m of pipes and is able to supply 1.2 l/s/ha on demand in each one of the 85 outlets. The 

assigned pressure in the outlet is 30 m. 

 

Results and discussion 

 

Climate variables have been calculated for Fuente Palmera irrigation district zone. Compared to the 

baseline, both A2 and B2 scenarios show major differences in rainfall and ET0 (Figure 4) in 2050 and 

2080 . ET0 is around 14 % higher than baseline by the 2050s and 25 % by the 2080s. The increase of 

ET0 is higher in winter for A2 scenarios though in B2 the increments are more constant along the year. 

July has the most unfavorable situation in all the scenarios. Rainfall will decrease by 11 % on average 



 

by the 2050s, specially in spring and summer months, and by 20 % and 35 % for B2 and A2 

respectively by the 2080s. Increased rainfall is predicted in some months of winter. Overall, the 

situation will be more unfavorable as in the months with peak demand, the conditions will be more 

extreme (less rainfall and more ET0). 

Figure 4. Values of rainfall and ET0 for all the scenarios 

 

Figure 5 shows the evolution of crop patterns from 1996 to 2007 and the prediction for A2+PE and 

B2+LS scenarios. Citrus and olive tree areas maintain their increasing trend and become the most 

important crops in the district though in B2+LS the area of olive trees decreases a bit. Cotton and 

sunflower areas have a decreasing trend being really low in A2+PE. Maize areas will continue 

reducing as in recent years and wheat will do the same after the high peak in 2007. Fruit trees will 

experience the biggest increase. The area destined to set-aside will be higher in both scenarios. Table 1 

presents the percentages of area for each crop in Baseline, A2+PE and B2+LS introduced in the 

CROPWAT model. 

Figure 5. Evolution of crop patterns in Fuente Palmera irrigation district 

 

In order to calculate requirements in CROPWAT, nine situations have been taken into account: 

• baseline  

• changed cropping patterns with no climate change (CC) (using baseline climate variables 

and A2+PE and B2+LS scenarios for crop patterns),  

• changed cropping patterns with CC in 2050 and 2080 (both scenarios) 

• CC (both scenarios) without cropping pattern changes (CPC) which means using the same 

crop pattern as for the baseline.  

 

Figure 6 shows the annual values for crop water requirements (CWR), irrigation requirements (IR) 

and maximum flow of water supply (FWS) for the mentioned situations (note that baseline is 

represented as no CC and no CPC). CWR are higher than baseline in all cases increasing around 30 % 



 

in A2+PE and B2+LS and 14 % with no CPC by the 2050s. By the 2080s, CWR will be 21, 41 and 46 

% higher than baseline for no CPC, A2+PE and B2+LS respectively. Differences between A2+PE and 

B2+LS are relatively small (20-30 mm). IR for A2+PE and B2+LS with no CC are nearly the same as 

baseline and FWS in these two situations is even lower than baseline which means that the crop 

combination in these cases has lower flow requirements in the peak period. IR are 25-35 % higher by 

the 2050s and up to 50-60 % by the 2080s.  

 

In the case of maximum FWS, there are more differences between scenarios which is important 

because FWS is the key factor affecting the network performance. By the 2050s, FWS values for 

A2+PE are only 3.5 % higher than baseline, being for B2+LS 10 % higher. By the 2080s, results show 

an increase of 15 % over baseline in A2+PE and nearly 25 % for B2+LS. It should be highlighted that 

FWS values in case of no CPC are higher than in A2+PE and B2+LS scenarios as they increase 33 and 

45 % over baseline by the 2050s and 2080s respectively. This means that due to the crop distribution, 

requirements for the different crops are more concentrated in certain periods for baseline crop pattern 

(though CWR and IR are lower during the year). FWS with no CPC is even higher by the 2050s than 

in B2+LS scenario by the 2080s so the crop pattern can be even more important than CC in the 

variations of FWS. When no CPC is taken in account, there is not much difference between A2 and B2 

SRES scenarios so only one was used to calculate FWS in this case. 

Figure 6. CWR, IR and FWS for all the situations 

 

The nine situations mentioned above were simulated in the network model created with EPANET 

for a peak demand reference day using the maximum flow required in the outlets (given by the FWS 

CROPWAT parameter and the area supplied) for each scenario. The demand pattern was also modeled 

and all the information about the parameters of the network was achieved hourly for this twenty-four 

hours period. Data on flows, pressures and power requirements were obtained. Table 2 shows the 

average values of the indicators and variables calculated for a reference day. The change in pressures 

is in a range of 2 m higher or lower than baseline which means that pressure will not be much affected 



 

in the future in A2+PE and B2+LS scenarios though in case of no CPC, pressure could decrease 5 m 

which could affect the most unfavorable outlets. PEq and Ps/a values are very similar to baseline by the 

2050s and will be a bit lower by the 2080s when the number of outlets with Ps/a < 1 will increase 

between 30 and 53 % over the baseline. That means that in B2+LS 2080, seven outlets more will work 

under the assigned pressure. Again, if no CPC is taken into account, PEq decreases 11 and 19 % by the 

2050s and 2080s respectively and the number of outlets with Ps/a < 1 is significantly higher. When no 

CC is taken into account A2+PE and B2+LS would need less pumping capacity due to lower 

maximum pumped flow required being consistent with the lower flow requirements discussed above. 

In the 2050s it is slightly higher, specially for B2+LS scenario (nearly 5 % over baseline) and by the 

2080s the required pumping capacity increases 13.4 % in A2+PE and 18 % in B2+LS. Power 

requirements will be similar by the 2050s but will be increased around 13 % in the 2080s. With no 

CPC, maximum flow required would be 34 % higher than baseline by the 2050s and 46 % by the 

2080s and power requirements would be increased up to 38 % by the 2080s. Therefore, results clearly 

point out how climate change would have a major impact on network performance with the existing 

cropping pattern, but that expected changes in cropping pattern would reduce this impact.  

Table 1. Average values of the indicators and variables calculated for a reference day 

 

Conclusions 

 

Because of the projected change in climatic conditions in the Cordoba region of southern Spain, the 

irrigation requirements will be higher in 2050 and 2080, leading to the increase of maximum flow 

requirements in the pumping station and in the outlet. That means that many networks will be 

overloaded and improvements in the infrastructures will be required to cope with this raising demand. 

This general conclusion is valid for various climatic scenarios and projected copping patterns.  

 

In the case of Fuente Palmera irrigation district, the system would still work properly in these 

conditions because it was designed for sprinkler irrigation so the pumping capacity is very high. 



 

However both water consumption and power requirements would be higher. The big changes in CWR 

or IR do not have much effect on the network performance in terms of pressure at least in the 2050s 

though the influence is slightly higher by the 2080s. The pumping capacity required is more difficult 

to satisfy in both situations. 

 

Changes in crop pattern were proved to have high influence in network performance, even more 

than climate change. Therefore, the increase of network requirements expected due to climate change 

predictions can be reduced using an appropriate crop pattern, adjusting CWR during the year and 

avoiding the concentration of the water demand in a peak period. The good selection of crops and the 

adaptation of varieties to new climate conditions could be the key factors to prevent network capacity 

overload. 

 

Besides, there is not much difference between the SRES and WADI scenarios considered either in 

terms of requirements or network performance. This means that whatever the evolution in policies and 

socio-economic patterns is, the impact on network performance will be low, compared to the global 

impact of climate and cropping pattern change.  

 

In addition, the methodology presented in this paper will help to identify the network areas which 

could have problems in the future and to assess other irrigation districts with different characteristics. 
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List of symbols 

 

CC: Climate Change 

CPC: Crop Pattern Changes 

CWR: Crop Water Requirements 

IR: Irrigation Requirements 

FWS: Flow Water Supply 

GCM: Global Climate Model 

GS: Global Sustainability 

LS: Local Stewardship 

P: real pressure measured in the checkpoint 

Pa: pressure assigned in the checkpoint 

Pav: average pressure 

Pmax: maximum pressure 

Pmin: minimum pressure 

Ps/a: simulated/assigned pressure ratio 

bqP : pressure average in the best quarter 

pqP : pressure average in the poorest quarter 

PE: Provincial Enterprise 

PEq: Pressure Equity 

WM: World Markets 
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Table 1. Average values of the indicators and variables calculated for a peak demand reference day 

  No CC 2050 2080 
  Baseline A2+PE  B2+LS A2+PE  B2+LS No CPC A2+PE  B2+LS No CPC 
 Max 89.17 90.11 90.97 89.04 88.60 81.91 87.48 86.85 82.69 
Pressure (m) Min 12.20 14.99 13.48 12.08 11.74 9.89 10.93 10.46 7.44 
 Av 45.45 47.69 46.86 45.33 44.94 40.95 44.05 43.52 40.03 
Pressure Equity (Peq) 0.37 0.40 0.39 0.37 0.36 0.33 0.35 0.34 0.30 

Simulated/assigned 
pressure ratio (Ps/a) 

Max 2.97 3.00 3.03 2.97 2.95 2.73 2.92 2.89 2.76 
Min 0.41 0.50 0.45 0.40 0.39 0.33 0.36 0.35 0.25 
Av 1.51 1.59 1.56 1.51 1.50 1.37 1.47 1.45 1.33 

Outlets with Ps/a < 1 13 9 11 13 13 25 17 20 27 
Max pumped flow (m3/s) 3.01 2.34 2.56 3.05 3.16 4.05 3.42 3.56 4.42 
Power requirements (kW) 1962.79 1587.48 1646.63 1968.65 2035.93 2508.57 2240.04 2217.52 2711.71 

 
 

  



 

 

 

 
 

 
LIST OF TABLES 

Table 1. Average values of the indicators and variables calculated for a reference day 

 

 

LIST OF FIGURES 

Figure 1. Flow chart showing methodology 

Figure 2. Model of the network in EPANET for the baseline 

Figure 3. Fuente Palmera irrigation district location, within Cordoba Region 

Figure 4. Values of rainfall and ET0 for all the scenarios 

Figure 5. Evolution of crop patterns in Fuente Palmera irrigation district 

Figure 6. CWR, IR and FWS for all the situations 

 



 

 

Climate variables Crop patternPrediction

ScenariosSRES emissions

A1
B1
A2
B2

WADI Agricultural Policy

World Markets
Global sustainability 

Provincial enterprise
Local Stewardship

EPANET
Simulation

Time horizons
Baseline

2050
2080

Cropwat
Rainfall

ETo

Crop pattern

Pressures
Equity

Pressure ratio
Maximum pumped flow

Energy consumption

Crop Water Requirements
Irrigation requirements
Maximum flow required

 

Figure 1. Flow chart showing methodology 



 

 

Figure 2. Model of the network in EPANET for the baseline 



 

 

 

Figure 3. Fuente Palmera irrigation district location, within Cordoba Region 
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Figure 4. Values of rainfall and ET0 for all the scenarios 
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Figure 5. Evolution of crop patterns in Fuente Palmera irrigation district



 

 

Figure 6. CWR, IR and FWS for all the situations 
 


