16 research outputs found

    Exact Quantum Query Complexity of EXACT and THRESHOLD

    Get PDF
    A quantum algorithm is exact if it always produces the correct answer, on any input. Coming up with exact quantum algorithms that substantially outperform the best classical algorithm has been a quite challenging task. In this paper, we present two new exact quantum algorithms for natural problems: - for the problem EXACT_k^n in which we have to determine whether the sequence of input bits x_1, ..., x_n contains exactly k values x_i=1; - for the problem THRESHOLD_k^n in which we have to determine if at least k of n input bits are equal to 1

    Optimal quantum query bounds for almost all Boolean functions

    Get PDF
    We show that almost all n-bit Boolean functions have bounded-error quantum query complexity at least n/2, up to lower-order terms. This improves over an earlier n/4 lower bound of Ambainis, and shows that van Dam's oracle interrogation is essentially optimal for almost all functions. Our proof uses the fact that the acceptance probability of a T-query algorithm can be written as the sum of squares of degree-T polynomials.Comment: 8 pages LaTe

    Separations in Query Complexity Based on Pointer Functions

    Get PDF
    In 1986, Saks and Wigderson conjectured that the largest separation between deterministic and zero-error randomized query complexity for a total boolean function is given by the function ff on n=2kn=2^k bits defined by a complete binary tree of NAND gates of depth kk, which achieves R0(f)=O(D(f)0.7537)R_0(f) = O(D(f)^{0.7537\ldots}). We show this is false by giving an example of a total boolean function ff on nn bits whose deterministic query complexity is Ω(n/log(n))\Omega(n/\log(n)) while its zero-error randomized query complexity is O~(n)\tilde O(\sqrt{n}). We further show that the quantum query complexity of the same function is O~(n1/4)\tilde O(n^{1/4}), giving the first example of a total function with a super-quadratic gap between its quantum and deterministic query complexities. We also construct a total boolean function gg on nn variables that has zero-error randomized query complexity Ω(n/log(n))\Omega(n/\log(n)) and bounded-error randomized query complexity R(g)=O~(n)R(g) = \tilde O(\sqrt{n}). This is the first super-linear separation between these two complexity measures. The exact quantum query complexity of the same function is QE(g)=O~(n)Q_E(g) = \tilde O(\sqrt{n}). These two functions show that the relations D(f)=O(R1(f)2)D(f) = O(R_1(f)^2) and R0(f)=O~(R(f)2)R_0(f) = \tilde O(R(f)^2) are optimal, up to poly-logarithmic factors. Further variations of these functions give additional separations between other query complexity measures: a cubic separation between QQ and R0R_0, a 3/23/2-power separation between QEQ_E and RR, and a 4th power separation between approximate degree and bounded-error randomized query complexity. All of these examples are variants of a function recently introduced by \goos, Pitassi, and Watson which they used to separate the unambiguous 1-certificate complexity from deterministic query complexity and to resolve the famous Clique versus Independent Set problem in communication complexity.Comment: 25 pages, 6 figures. Version 3 improves separation between Q_E and R_0 and updates reference

    Polynomials, Quantum Query Complexity, and Grothendieck\u27s Inequality

    Get PDF
    We show an equivalence between 1-query quantum algorithms and representations by degree-2 polynomials. Namely, a partial Boolean function f is computable by a 1-query quantum algorithm with error bounded by epsilon<1/2 iff f can be approximated by a degree-2 polynomial with error bounded by epsilon\u27<1/2. This result holds for two different notions of approximation by a polynomial: the standard definition of Nisan and Szegedy and the approximation by block-multilinear polynomials recently introduced by Aaronson and Ambainis [Aaronson/Ambainis, STOC 2015]. The proof uses Grothendieck\u27s inequality to relate two matrix norms, with one norm corresponding to polynomial approximations and the other norm corresponding to quantum algorithms. We also show two results for polynomials of higher degree. First, there is a total Boolean function which requires ~Omega(n) quantum queries but can be represented by a block-multilinear polynomial of degree ~O(sqrt(n)). Thus, in the general case (for an arbitrary number of queries), block-multilinear polynomials are not equivalent to quantum algorithms. Second, for any constant degree k, the two notions of approximation by a polynomial (the standard and the block-multilinear) are equivalent. As a consequence, we solve an open problem from [Aaronson/Ambainis, STOC 2015], showing that one can estimate the value of any bounded degree-k polynomial p:{0,1}^n -> [-1,1] with O(n^{1-1/(2k)) queries
    corecore