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ABSTRACT
In 1986, Saks and Wigderson conjectured that the largest
separation between deterministic and zero-error random-
ized query complexity for a total boolean function is given
by the function f on n = 2k bits defined by a complete
binary tree of NAND gates of depth k, which achieves
R0(f) = O(D(f)0.7537...). We show this is false by giving an
example of a total boolean function f on n bits whose deter-
ministic query complexity is Ω(n/ log(n)) while its zero-error

randomized query complexity is Õ(
√
n). We further show

that the quantum query complexity of the same function is

Õ(n1/4), giving the first example of a total function with a
super-quadratic gap between its quantum and deterministic
query complexities.

We also construct a total boolean function g on n variables
that has zero-error randomized query complexity Ω(n/ log(n))
and bounded-error randomized query complexity R(g) =

Õ(
√
n). This is the first super-linear separation between

these two complexity measures. The exact quantum query

complexity of the same function is QE(g) = Õ(
√
n).

These functions show that the relations D(f) = O(R1(f)2)

and R0(f) = Õ(R(f)2) are optimal, up to poly-logarithmic
factors. Further variations of these functions give additional
separations between other query complexity measures: a
cubic separation between Q and R0, a 3/2-power separation
between QE and R, and a 4th power separation between
approximate degree and bounded-error randomized query
complexity.

All of these examples are variants of a function recently
introduced by Göös, Pitassi, and Watson which they used
to separate the unambiguous 1-certificate complexity from
deterministic query complexity and to resolve the famous
Clique versus Independent Set problem in communication
complexity.

Categories and Subject Descriptors
F.1.1 [Computation by Abstract Devices]: Models of
Computation; F.1.2 [Computation by Abstract Devices]:
Modes of Computation

General Terms
Theory

Keywords
Deterministic algorithms, Randomized algorithms, Quantum
algorithms, Monte Carlo, Las Vegas

1. INTRODUCTION
Query complexity has been very useful for understanding

the power of different computational models. In the standard
version of the query model, we want to compute a boolean
function f : {0, 1}n → {0, 1} on an initially unknown input
x ∈ {0, 1}n that can only be accessed by asking queries of
the form xi =?. The advantage of query complexity is that
we can often prove tight lower bounds and have provable
separations between different computational models. This is
in contrast to the Turing machine world where lower bounds
and separations between complexity classes often have to
rely on unproven assumptions. At the same time, the model
of query complexity is simple and captures the essence of
quite a few natural computational processes.

We use D(f), R(f) and Q(f) to denote the minimum num-
ber of queries in deterministic, randomized and quantum
query algorithms1 that compute f . It is easy to see that
Q(f) ≤ R(f) ≤ D(f) for any function f . For partial func-
tions (that is, functions whose domain is a strict subset
of {0, 1}n), huge separations are known between all these
measures. For example, a randomized algorithm can tell
if an n-bit boolean string has 0 ones or at least n/2 ones
with a constant number of queries, while any deterministic
algorithm requires Ω(n) queries to do this. Similarly, Aaron-
son and Ambainis [1] recently constructed a partial boolean
function f on n variables that can be evaluated using one

1By default, we use R(f) and Q(f) to refer to bounded-error
algorithms (i.e., algorithms that compute f(x) correctly on
every input x with probability at least 9/10).
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lower bound for all f previous separation this paper function result

R0(f) Ω(D(f)1/2) [13, 5, 23] O(D(f)0.753...) [22] Õ(D(f)1/2) f2n,n Corollary 7

Q(f) Ω(D(f)1/6) [3] O(D(f)1/2) [12] Õ(D(f)1/4) f2n,n Corollary 7

R1(f) Ω(R0(f)1/2)[18] O(R0(f)) Õ(R0(f)1/2) gn,n Corollary 14

QE(f) Ω(R0(f)1/3)[15] O(R0(f)0.867...)[2] Õ(R0(f)1/2) gn,n Corollary 14

Q(f) Ω(R0(f)1/6)[3] O(R0(f)1/2) [12] Õ(R0(f)1/3) hn,n,n2 Corollary 19

QE(f) Ω(R(f)1/3) [15] O(R(f)0.867...) [2] Õ(R(f)2/3) h1,n,n2 Corollary 21

d̃eg(f) Ω(D(f)1/6) [3] O(R(f)1/2) [19] Õ(R(f)1/4) h1,n,n2 Corollary 23

Table 1: Attained separations.

quantum query but requires Ω(
√
n) queries for randomized

algorithms.
The situation is quite different for total functions.2 Here it

is known that D(f), R(f), and Q(f) are all polynomially re-
lated. In fact, D(f) = O(R(f)3) [18] and D(f) = O(Q(f)6)
[3]. A popular variant of randomized algorithms is the zero-
error (Las Vegas) model in which a randomized algorithm
always has to output the correct answer, but the number of
queries after which it stops can depend on the algorithm’s
coin flips. The complexity R0(f) is defined as the expected
number of queries, over the randomness of the algorithm, for
the worst case input x. A tighter relation D(f) ≤ R0(f)2

is known for Las Vegas algorithms (this was independently
observed by several authors [13, 5, 23]). Nisan has even
shown D(f) = O(R1(f)2) [18], where R1(f) is the one-
sided error randomized complexity of f . Recently, Kulkarni
and Tal [14], basing on a result by Midrijānis [16], showed

that R0(f) = Õ(R(f)2), where the Õ notation hides poly-
logarithmic factors.

While it has been widely conjectured that these relations
are not tight, little progress has been made in the past
20 years on improving these upper bounds or exhibiting
functions with separations approaching them. Between D(f)
and R0(f), the best separation known for a total function
is the function NANDk on n = 2k variables defined by
a complete binary NAND tree of depth k. This function
satisfies R0(NANDk) = O(D(NANDk)0.7537...) [22]. Saks
and Wigderson showed that this upper bound is optimal for
NANDk, and conjectured that this is the largest gap possible
between R0(f) and D(f) [20]. This function also provides
the largest known gap between R(f) and D(f), and satisfies
R(NANDk) = Ω(R0(NANDk)) [21]. This situation points to
the broader fact that, as far as we are aware, no super-linear
gap is known between R(f) and R0(f) for a total function
f . Between Q(f) and D(f), the largest known separation is
quadratic, given by the OR function on n bits, which satisfies
Q(f) = O(

√
n) [12] and D(f) = Ω(n).

1.1 Our Results
We improve the best known separations between all of

these measures. In particular, we show that

• There is a function f with R0(f) = Õ(D(f)1/2). This
refutes the nearly 30 year old conjecture of Saks and
Wigderson [20], and shows that the upper bounds
D(f) ≤ R0(f)2 and D(f) = O(R1(f)2) are tight, up to
poly-logarithmic factors.

2In the rest of the paper we will exclusively talk about total
functions. Hence, we sometimes drop this qualification.

• There is a function f with R1(f) = Õ(R0(f)1/2). This
is also nearly optimal due to Nisan’s result D(f) =

O(R1(f)2), as well as the result R0(f) = Õ(R(f)2) by
Kulkarni and Tal. Previously, no super-linear separa-
tion was known even between R(f) and R0(f).

• There is a function f with Q(f) = Õ(D(f)1/4). This is
the first improvement in nearly 20 years to the quadratic
separation given by Grover’s search algorithm [12].

• Let QE(f) be the exact quantum query complexity,
the minimal number of queries needed by a quantum
algorithm that stops after a fixed number of steps and
outputs f(x) with probability 1. We exhibit functions

f1, f2 for which QE(f1) = Õ(R0(f1)1/2) and QE(f2) =

Õ(R(f2)2/3). This improves the best known separation
of Ambainis from 2011 [2] giving an f for which Q(f) =
O(R(f)0.867...). Prior to the work of Ambainis, no
super-linear separation was known, the largest known
separation being a factor of 2, attained for the PARITY
function [9].

A full list of our results are given in the Table 1. Subsequent
to our work, Ben-David [4] has additionally given a super-
quadratic separation between Q(f) and R(f), exhibiting a

function with Q(f) = Õ(R(f)2/5).
Other separations can be obtained from this table using

relations between complexities in Figure 2.

1.2 Göös-Pitassi-Watson Function
All of our separations are based on an amazing function

recently introduced by Göös, Pitassi, and Watson [11] to
resolve the deterministic communication complexity of the
Clique vs. Independent set problem, thus solving a long-
standing open problem in communication complexity. They
solved this problem by first solving a corresponding question
in the query complexity model and then showing a general
“lifting theorem” that lifts the hardness of a function in the
deterministic query model to the hardness of a derived func-
tion in the model of deterministic communication complexity.
In the query complexity model, their goal was to exhibit a
total boolean function f that has large deterministic query
complexity and small unambiguous 1-certificate complexity.3

3A subcube is the set of strings consistent with a partial
assignment xi1 = b1, . . . , xis = bs. Its length is s, the number
of assigned variables. The unambiguous 1-certificate com-
plexity is the smallest s such that f−1(1) can be partitioned
into subcubes of length s (whose corresponding partial as-
signments are consequently 1-certificates of f). See Section 2
for full definitions.
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The starting point of their construction is the boolean
function f : {0, 1}M → {0, 1} with the input variables xi,j
arranged in a rectangular grid M = [n] × [m]. The value
of the function is 1 if and only if there exists a unique all-1
column. The deterministic complexity of this function is
Ω(nm), since it is hard to distinguish an input with precisely
one zero in each column from the input in which one of the
zeroes is flipped to one. It is also easy to construct a 1-
certificate of length n+m−1: Take the all-1 column and one
zero from each of the remaining columns. This certificate is
not always unique, however, as there can be multiple zeroes
in a column and any of them can be chosen in a certificate.
Indeed, it is impossible to partition the set of all positive
inputs into subcubes of small length.

Göös et al. added a surprisingly simple ingredient that
solves this problem: pointers to cells in M . One can specify
which zero to take from each column by requiring that there
is a path of pointers that starts in the all-1 column and visits
exactly one zero in all other columns, see Figure 1. Thus,
the set of positive inputs breaks apart into a disjoint union
of subcubes of small length. Since the pointers provide great
flexibility in the positioning of zeroes, this function is still
hard for a deterministic algorithm.
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1

1

1

1

⊥
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⊥

⊥

⊥

⊥

⊥

0

00
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0
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Figure 1: An example of a 1-certificate for the
Göös-Pitassi-Watson function. The center of a cell
xi,j shows val(xi,j) and the top right corner shows
point(xi,j)

Formally, the definition of the Göös-Pitassi-Watson func-
tion is as follows. Let n and m be positive integers, and
M = [n]× [m] be a grid with n rows and m columns. Let

M̃ = M ∪ {⊥}. Elements in M̃ are considered as pointers to
the cells of M , where ⊥ stands for the null pointer.

The function gn,m : ({0, 1} × M̃)M → {0, 1} is defined as

follows. We think of each tuple v = (b, p) ∈ {0, 1} × M̃ in
the following way. The element b ∈ {0, 1} of the pair is the

value and the second element p ∈ M̃ is the pointer. We will
use the notation val(v) = b and point(v) = p.

Although gn,m is not a boolean function, it can be con-
verted into an associated boolean function by encoding the

elements of the input alphabet Σ = {0, 1}×M̃ using dlog |Σ|e
bits.

An input (xi,j)(i,j)∈M evaluates to 1 if and only if the
following three conditions are satisfied (see Figure 1 for an
illustration):

1. There is exactly one column b such that val(xi,b) = 1
for all i ∈ [n]. We call this the marked column.

2. In the marked column, there exists a unique cell a such
that xa 6= (1,⊥). We call a the special element.

3. For the special element a, by following the pointers
inductively defined as p1 = point(xa) and ps+1 =
point(xps) for s = 1, . . . ,m− 2 we visit every column
except the marked column, and val(xps) = 0 for each
s = 1, . . . ,m− 1. We call p1, . . . , pm−1 the highlighted
zeroes.

For each positive input x, the all-1 column satisfying items (1)
and (2) of the definition, and the highlighted zeroes from (3)
give a unique minimal 1-certificate of x. Thus, the unam-
biguous 1-certificate complexity of this function is n+m− 1.
Göös et al. showed that this function has deterministic query
complexity mn, giving a quadratic separation between the
two when n = m.

1.3 Our Technique and Pointer Functions
As described in the previous section, Göös et al. showed

how pointers can make certificates unambiguous without
substantially increasing their size. This technique turns out
to be quite powerful for other applications as well.

Using the Göös-Pitassi-Watson function, it is already pos-
sible to give a larger separation between randomized and
deterministic query complexity than previously known. For
instance, Mukhopadhyay and Sanyal [17], independently

from our work, obtained separations R(f) = Õ(
√
D(f)) and

R0(f) = Õ(D(f)3/4). However, these algorithms are rather
complicated, and it is not known whether this function can
realize an optimal separation between R0(f) and D(f).

We instead modify the Göös-Pitassi-Watson function in
various ways. For the separation between R0 and D the
key new idea we add is the use of back pointers; for the
separation between Q and D, in addition to back pointers,
we further replace the path of zeroes in the Göös-Pitassi-
Watson function with a balanced tree whose leaves are the
highlighted zeroes; finally, we consider a modification of
the Göös-Pitassi-Watson function where there are multiple
marked columns for the separation between Q and R0. We
now describe our modifications in more detail.

Back pointers.
A back pointer points either to a cell in M or to a column

in [m]. For instance, in order to get a quadratic separation
between R0(f) and D(f), we require that each highlighted
zero points back to the marked (all-1) column. It turns out
that this function is still hard for a deterministic algorithm. A
randomized algorithm, on the other hand, can take advantage
of the back pointers to quickly find the all-1 column, if it
exists. The algorithm begins by querying all elements in
a column. Let Z be the set of zeroes in this column and
B(Z) be the set of columns pointed to by the back pointers
in Z. If the value of function is 1, B(Z) must contain the
marked column. However, B(Z) may also contain pointers to
non-marked columns. We estimate the number of zeroes in
each column of B(Z) by sampling. If we find a zero in every
column of B(Z), then we can reject the input. On the other
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hand, we can tune the sampling so that if no zero is found
in a column c ∈ B(Z), then, with high probability, c has
at most |Z|/2 many zeroes. We then move to this column
c and repeat the process. Even if c is not marked, we have
made progress by halving the number of zeroes, and, in a
logarithmic number of repetitions, we either find the marked
column or reject.

In this way, back pointers to the marked column from
the highlighted zeroes make the function easy for an R0

algorithm, but hard for a deterministic one. Similarly, if
we only require that at least half of the highlighted zeroes
point back to the special element a from condition (2), the
function becomes hard for R0, but easy for R1.

Making partial functions total.
From another vantage point, the pointer technique can

essentially turn a partial function into a total one. This
is beneficial as it is easy to prove separations for a partial
function. Let us describe our separation between Monte
Carlo and Las Vegas query complexities as an indicative
example.

It is easy to provide a separation between R(f) and R0(f)
for partial functions. For example, consider the following
partial boolean function f on m variables. For x ∈ {0, 1}m,
the value of f(x) is 1 if the Hamming weight |x| ≥ m/2, and
f(x) = 0 if |x| = 0. Otherwise, the function is not defined.
The Monte Carlo query complexity of this function is O(1),
but its Las Vegas complexity is m/2 + 1, since it takes that
many queries to reject the all-0 string.

How can we obtain a total function with the same prop-
erty that there are either exactly 0 or at least m/2 marked
elements? We define a variant of the Göös-Pitassi-Watson
function, where we require that, in a positive input, at least
m/2 of the highlighted zeroes point back to the special el-
ement a of condition (2). Consider an auxiliary function
f on the columns of the grid M . For a column j ∈ [m],
f(j) = 1 if and only if the value of the original function is
1, and the highlighted zero in column j points back to a.
Thus, by definition, either f(j) = 0 for all j, or f(j) = 1
for at least half of all j ∈ [m]. Given a column j, we can
find a by analyzing the back pointers contained in column j.
When a is found, it is easy to test whether the value of the
function is 1 and the highlighted zero in column j points to
a. Moreover, this procedure can be made deterministic and

uses only Õ(n+m) queries.
Subsequent to our work, Ben-David [4] devised a different

way of converting a partial function into a total one, and
applied it to the forrelation problem [1] to give a function f

with Q(f) = Õ(R(f)2/5), the first super-quadratic separation
between these measures.

Use of a balanced tree.
Instead of a path through the highlighted zeroes as in

condition (3) of the Göös-Pitassi-Watson function, we use a
balanced binary tree with the zeroes being the leaves of the
tree. This serves at least three purposes.

First, this allows for even greater flexibility in placing
the zeroes. As they are the leaves of the tree, they are not
required to point to other nodes. This helps in proving Las
Vegas lower bounds.

Second, the tree allows “random access” to the highlighted
zeroes. This is especially helpful for quantum algorithms.

After the algorithm finds the marked column, it should check
the highlighted zeroes. The last element of the path can be
only accessed in m queries. But if we arrange the zeroes in a
binary tree, each zero can be accessed in only a logarithmic

number of queries, hence, they can be tested in Õ(
√
m)

queries using Grover’s search.
Finally, it can make the function hard even for a Monte

Carlo algorithm (if no back pointers are present). In the
original Göös-Pitassi-Watson function, when a randomized
algorithm finds a highlighted zero, it can follow the path
starting from that cell. As the zeroes are arranged in a path,
the algorithm can thus eliminate half of the potential marked
columns on average. This fact is exploited by the algorithm
of Mukhopadhyay and Sanyal [17].

Similarly, when an algorithm finds a node of the tree it
can also explore the corresponding subtree. The difference is
that the expected size of a subtree rooted in a node of the
tree is only logarithmic. Thus, even if the algorithm finds
this node, it does not learn much, and we are able to prove
an Ω(nm/ logm) lower bound for a Monte Carlo algorithm.

In principle, all of the above problems can be solved by
adding direct pointers from the special element (a in con-
dition (2)) to a zero in each non-marked column (that is,
using an (m− 1)-ary tree of depth 1 instead of a binary tree
of depth O(logm)). The problem with this solution is that
the size of the alphabet becomes exponential, rendering this
construction useless for boolean functions.

Choice of separating functions.
We have outlined above three ingredients that can be

added to the original Göös-Pitassi-Watson function: using
various back pointers, identifying unmarked columns by a tree
of pointers, and increasing the number of marked columns.
These ingredients can be added in various combinations to
produce different effects. In order to reduce the number of
functions introduced, in this paper we stick to three varia-
tions:

• a function fn,m with back pointers to the marked col-
umn from each of the highlighted zeroes.

• a function gn,m with back pointers to the special ele-
ment from half of the highlighted zeroes, and

• a function hk,n,m with k marked columns and no back
pointers.

All three functions use a balanced binary tree.
This does not mean that a given separation cannot be

proven with a different combination of ingredients. For
example, as outlined above, the R0 vs D separation can
be proven for the original Göös-Pitassi-Watson function by
equipping each highlighted zero with a back pointer to the
marked column and not using the binary tree.

2. PRELIMINARIES
We let [n] = {1, 2, . . . , n}. We use f(n) = Õ(g(n)) to mean

that there exists constants c, k and an integer N such that
|f(n)| ≤ c|g(n)| logk(n) for all n > N .

In the remaining part of this section, we define the notion
of query complexity for various models of computation. For
more detail on this topic, the reader may refer to the sur-
vey [8]. Relations between various models are depicted in
Figure 2.
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Figure 2: Relations between various complexities.
An arrow means that complexity on the left is at
most the complexity on the right.

Deterministic query complexity.
Let Σ be a finite set. A decision tree T on n variables and

the input alphabet Σ is a rooted tree, where

• internal nodes are labeled by elements of [n];

• every internal node v has degree |Σ| and there is a
bijection between the edges from v to its children and
the elements of Σ;

• leaves are labeled from {0, 1}.

The output of the decision tree T on input x ∈ Σn, denoted
T (x), is determined as follows. Start at the root. If this is a
leaf, then output its label. Otherwise, if the label of the root
is i ∈ [n], then follow the edge labeled by xi (this is called a
query) and recursively evaluate the corresponding subtree.
We say that T computes the function f : Σn → {0, 1} if
T (x) = f(x) on every input x. The cost of T on input x,
denoted C(T, x), is the number of internal nodes visited by
T on x. The deterministic query complexity D(f) of f is
the minimum over all decision trees T computing f of the
maximum over all x of C(T, x).

Randomized query complexity.
We follow the definitions for randomized query complexity

given in [24, 18]. A randomized decision tree Tµ is defined
by a probability distribution µ over deterministic decision
trees. On input x, a randomized decision tree first selects
a deterministic decision tree T according to µ, and then
outputs T (x). The expected cost of Tµ on input x is the
expectation of C(T, x) when T is picked according to µ. The
worst-case expected cost of Tµ is the maximum over inputs
x of the expected cost of Tµ on input x.

There are three models of randomized decision trees that
differ in the definition of “computing” a function f .

• Zero-error (Las Vegas): It is required that the algorithm
gives the correct output with probability 1 for every
input x, that is, every deterministic decision tree T in
the support of µ computes f .

• One-sided error: It is required that negative inputs
are rejected with probability 1, and positive inputs are
accepted with probability at least 1/2.

• Two-sided error (Monte Carlo): It is required that the
algorithm gives the correct output with probability at
least 9/10 for every input x.

The error probability in the one-sided and two-sided cases
can be reduced to ε by repeating the algorithm O(log 1

ε
)

times.

We define randomized query complexities R0(f), R1(f),
and R(f) as the minimum worst-case expected cost of a
randomized decision tree to compute f in the zero, one-sided,
and bounded-error sense, respectively.

Distributional query complexity.
A common way to show lower bounds on randomized

complexity, and the way we will do it in this paper, is to
consider distributional complexity [24]. The cost of a de-
terministic decision tree T with respect to a distribution
ν, denoted C(T, ν), is Ex←ν [C(T, x)]. The decision tree T
computes a function f with distributional error at most δ if
Prx←ν [T (x) = f(x)] ≥ 1 − δ. Finally, the δ-error distribu-
tional complexity of T with respect to ν, denoted ∆δ,ν(f),
is the minimum of C(T, ν) over all T that compute f with
distributional error at most δ.

Yao has shown the following:

Theorem 1 (Yao [24]). For any distribution ν and a
function f , R0(f) ≥ ∆0,ν(f) and R(f) ≥ 1

2
∆2/10,ν(f).

In general, Yao shows that the δ-error randomized complexity
of a function f is at least 1

2
∆2δ,ν(f), for any distribution ν.

We obtain the constant 2
10

on the right hand side as we have
defined R(f) for algorithms that err with probability at most
1
10

.

Quantum query complexity.
The main novelty in a quantum query algorithm is that

queries can be made in superposition. For this exposition
we assume Σ = [|Σ|] (this identification can be made in an
arbitrary way). The memory of a quantum query algorithm
contains two registers, the query register HQ which holds
two integers j ∈ [n] and p ∈ Σ and the workspace HW which
holds an arbitrary value. A query on input x is encoded as a
unitary operation Ox in the following way. On input x and
an arbitrary basis state |j, p〉 |w〉 ∈ HQ ⊗HW ,

Ox |j, p〉 |w〉 = |j, p+ xj mod |Σ|〉 |w〉 .

A quantum query algorithm begins in the initial state |0, 0〉 |0〉
and on input x proceeds by interleaving arbitrary unitary
operations independent of x and the operations Ox. The cost
of the algorithm is the number of applications of Ox. The out-
come of the algorithm is determined by a two-outcome mea-
surement, specified by a complete set of projectors {Π0,Π1}.
If |Ψx〉 is the final state of the algorithm on input x, the
probability that the algorithm outputs 1 is ‖Π1|Ψx〉‖2. The
exact quantum query complexity of the function f , denoted
QE(f), is the minimum cost of a quantum query algorithm
that outputs f(x) with probability 1 for every input x. The
bounded-error quantum query complexity of the function
f , denoted Q(f), is the minimum cost of a quantum query
algorithm that outputs f(x) with probability at least 9/10
for every input x.

We will describe our quantum algorithms as classical al-
gorithms which use the following well-known quantum algo-
rithms as subroutines. Let Ox be a quantum oracle encoding
a string x ∈ {0, 1}n.

• Grover’s search [12, 6]: Assume it is known that |x| ≥ t.
There is a quantum algorithm using O(

√
n/t) queries

to Ox that finds an i such that xi = 1 with probability
at least 9/10.
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• Exact Grover’s search [6]. Assume it is known that

|x| = t. There is a quantum algorithm using O(
√
n/t)

queries to Ox that finds an i such that xi = 1 with
certainty. The case t = n/2 is essentially the Deutsch-
Jozsa problem [10].

• Approximate counting [7]: Let t = |x|. There is a
quantum algorithm making O(

√
n) queries to Ox that

outputs a number t̃ satisfying |t̃− t| ≤ t
10

with proba-
bility at least 9/10.

• Amplitude amplification [6]: Assume a quantum algo-
rithm A prepares a state |ψ〉 = α0 |0〉 |ψ0〉+α1 |1〉 |ψ1〉,
where ψ, ψ0 and ψ1 are unit vectors, and α0 and α1

are real numbers. Thus, the success probability of A,
i.e., probability of obtaining 1 in the first register after
measuring |ψ〉, is α2

1.

Assume a lower bound p is known on α2
1. There exists

a quantum algorithm that makes O(1/
√
p) calls to A,

and either fails, or generates the state |1〉 |ψ1〉. The
success probability of the algorithm is at least 9/10.

In all of these quantum subroutines, the error probability
can be reduced to ε by repeating the algorithm O(log 1

ε
)

times.

Polynomial degree.
Every boolean function f : {0, 1}n → {0, 1} has a unique ex-

pansion as a multilinear polynomial p =
∑
S⊆[n] αs

∏
i∈S xi.

The degree of f , denoted deg(f), is the size of a largest mono-
mial xS in p with nonzero coefficient αS . The approximate

degree of f , denoted d̃eg(f), is

d̃eg(f) = min
{

deg(g)
∣∣ |g(x)− f(x)| ≤ 1

10
∀x ∈ {0, 1}n

}
.

For any quantum algorithm that uses T queries to the quan-
tum oracle Ox, its acceptance probability is a polynomial
of degree at most 2T [3]. Therefore, deg(f) ≤ 2QE(f) and

d̃eg(f) ≤ 2Q(f).

Certificate complexity.
A partial assignment in Σn is a string in a ∈ (Σ ∪ {?})n.

The length of a partial assignment is the number of non-star
values. A string x ∈ Σn is consistent with an assignment
a if xi = ai whenever ai 6= ?. Every partial assignment
defines a subcube, which is the set of all strings consistent
with that assignment. For every subcube there is a unique
partial assignment that defines it, and we define the length
of a subcube as the length of this assignment.

For b ∈ {0, 1}, a b-certificate for a function f : Σn → {0, 1}
is a partial assignment such that the value of f is b for all
inputs in the associated subcube. The b-certificate complexity
of f is the smallest number k such that the set f−1(b) can
be written as a union of subcubes of length at most k. The
unambiguous b-certificate complexity of f is the smallest
number k such that the set f−1(b) can be written as a
disjoint union of subcubes of length at most k.

Booleanizing a function.
While we define functions over a nonboolean alphabet Σ,

it is more typical in query complexity to discuss boolean
functions. Fix a surjection b : {0, 1}dlog |Σ|e → Σ. For a
function f : Σn → {0, 1}, we define the associated boolean

function f̃ : {0, 1}ndlog |Σ|e → {0, 1} by f̃(x) = f(b(x)). A

lower bound on f in the model where a query returns an
element of Σ will also apply to f̃ in the model where a
query returns a boolean value. Also, if f can be computed
with t queries then we can convert this into an algorithm
for computing f̃ with t dlog |Σ|e queries by querying all the
bits of the desired element. We will state our theorems for
nonboolean functions where a query returns an element of
Σ and the alphabet size |Σ| will always be polynomial in
the input length. By the remarks above, such separations
can be converted into separations for the associated boolean
function with a logarithmic loss.

3. SEPARATIONS AGAINST DETERMINIS-
TIC COMPLEXITY

Let n, m, M , M̃ be as in the definition of the Göös-Pitassi-

Watson function. Let also C̃ = [m] ∪ {⊥} be the set of
pointers to the columns of M . The input alphabet of our

function is Σ = {0, 1} × M̃ × M̃ × C̃. For v ∈ Σ, we call
the elements of the quadruple the value, the left pointer, the
right pointer and the back pointer of v, respectively. We use
notation val(v), lpoint(v), rpoint(v), and bpoint(v) for them
in this order.

1110987

654321

Figure 3: A balanced tree on 11 leaves.

Let T be a fixed balanced oriented binary tree with m
leaves and m−1 internal vertices. For instance, we can make
the following canonical choice. If m = 2k is a power of two,
we use the completely balanced binary tree on m leaves, in
which each leaf is at distance k from the root. Otherwise,
assume 2k < m < 2k+1. Take the completely balanced tree
on 2k leaves, and add a pair of children to each of its m− 2k

leftmost leaves. An example is in Figure 3.
We have the following labels in T . The outgoing arcs from

each node are labeled by ‘left’ and ‘right’. The leaves of the
tree are labeled by the elements of [m] from left to right, with
each label used exactly once. For each leaf j ∈ [m] of the
tree, the path from the root to the leaf defines a sequence of
‘left’ and ‘right’ of length O(logm), which we denote T (j).

The function fn,m : ΣM → {0, 1} is defined as follows. For
an input x = (xi,j), we have fn,m(x) = 1 if and only if the
following conditions are satisfied (for an illustration refer to
Figure 4):

1. There is exactly one column b ∈ [m] with val(xi,b) = 1
for all i ∈ [n]. We refer to it as the marked column.
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2. In the marked column, there exists a unique cell a such
that xa 6= (1,⊥,⊥,⊥). We call a the special element.

3. For each non-marked column j ∈ [m]\{b}, let `j be the
end of the path which starts at the special element a
and follows the pointers lpoint and rpoint as specified
by the sequence T (j). We require that `j exists (no
pointer on the path is ⊥), `j is in the jth column, and
val
(
x`j
)

= 0. We call `j the leaves of the tree.

4. Finally, for each non-marked column j ∈ [m] \ {b}, we
require that bpoint

(
x`j
)

= b.

The values of lpoint(x`j ) and rpoint(x`j ) can be arbitrary.

1

1

1

1

1

1

1

1

⊥ ⊥
⊥

⊥ ⊥
⊥

⊥ ⊥
⊥

⊥ ⊥
⊥

⊥ ⊥
⊥

⊥ ⊥
⊥

⊥ ⊥
⊥

⊥

0

0

0 0 0

0

0

Figure 4: An example of a 1-certificate for the func-
tion f8,8. The tree T is like in Figure 3 on the left.
The center of a cell xi,j shows val(xi,j), the bottom
of the cell shows bpoint(xi,j) and the bottom left and
right sides show lpoint(xi,j) and rpoint(xi,j), respec-
tively. Values and pointers that are not shown can
be chosen arbitrarily.

Theorem 2. If n = 2m and m is sufficiently large, the
deterministic query complexity D(fn,m) ≥ m2.

Proof. We describe an adversary strategy that ensures
that the value of the function is undetermined after m2

queries, provided m ≥ 4. Assume a deterministic query
algorithm queries a cell (i, j). Let k be the number of queried
cells in column j, including the cell (i, j). If k ≤ m, the
adversary replies with (1,⊥,⊥,⊥). Otherwise, the response
is (0,⊥,⊥, k −m).

Note that, after all the cells are queried in some column, it
contains m cells with (1,⊥,⊥,⊥) and one cell with (0,⊥,⊥, b)
for each b ∈ [m].

Claim 3. If there is a column b ∈ [m] with at most m
queried cells and there are at least 4m unqueried cells in total,
then the function value is undetermined.

Proof. First, the adversarial strategy is such that no
all-one column can ever be constructed, hence, by answering

all remaining queries with value 0, the adversary can make
the function evaluate to 0.

Now we show that the function value can also be set to
1. For each column j 6= b, define `j as follows. If column j
contains an unqueried cell (i, j), let `j = (i, j), and assign the
quadruple (0,⊥,⊥, b) to this cell. If all elements in column j
were queried, then, by the adversary strategy, it contains a
cell with quadruple (0,⊥,⊥, b). Let `j be this cell.

Next, the queried cells in column b only contain (1,⊥,⊥,⊥).
Assign the quadruple (1,⊥,⊥,⊥) to the remaining cells in
column b except for one special cell a. Using the cell a as the
root construct a tree of pointers isomorphic to T using as
internal vertices some of the remaining unqueried cells, and
such that the jth leaf is `j . Finally, assign the quadruple
(1,⊥,⊥,⊥) to every other cell.

To carry out the construction above, we need m− 2 un-
queried cells outside of column b and the set of `js to place
the internal vertices of the tree. Since there are 2m cells in
column b and m− 1 cells are used by `js, it suffices to have
4m unqueried cells to do this.

It takes more than m2 queries to ensure that each column
contains more than m queried cells. As 2m2 − 4m ≥ m2

when m ≥ 4, we obtain the required lower bound.

Algorithm 1 A Las Vegas randomized algorithm for the
function fn,m

VerifyColumn(j) tests whether column j is marked

1. If column j does not satisfy condition (2) of the def-
inition of fn,m, then reject. Otherwise, let a be the
special element.

2. Following the left and right pointers from a and query-
ing the elements along the way, check that the tree
rooted at a satisfies conditions (3) and (4) of the defi-
nition of fn,m. If it does, accept. Otherwise, reject.

TestColumn(c, k) always returns ‘True’ if column c has
no zeroes. If it has more than k/2 zeroes, returns ‘False’
with probability ≥ 1 − 1/(nm)2. Returns anything in the
intermediate cases.

1. Query O(n
k

log(nm)) random elements from column c.
If no zero was found, return ‘True’. Otherwise, return
‘False’.

Main procedure of the algorithm

1. Let j be an arbitrary column in [m], and k ← n.

2. Repeat the following actions:

(a) Query all the elements of column j. If all of them
have value 1, VerifyColumn(j).

(b) If column j contains more than k zeroes, then
query all the elements of M and output the value
of the function.

(c) Else, let C be the set of nonnull back pointers
stored in the zero elements of column j. For each
c ∈ C, TestColumn(c, k). If ‘False’ is obtained for
all the columns, reject. Otherwise, let j be any
column with outcome ‘True’.

(d) If k = 0, reject. Otherwise, let k ← bk/2c, and
repeat the loop.
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Theorem 4. For the Las Vegas randomized complexity,

we have R0(fn,m) = Õ(n+m).

Proof. For the description, see Algorithm 1. With each
iteration of the loop in step 2, k gets reduced by half until
it becomes zero, hence, after O(log n) iterations of the loop,
the algorithm terminates.

Let us check the correctness of the algorithm. The algo-
rithm only accepts in two places: on step 2(b), or in the
VerifyColumn procedure. In both cases, the algorithm ac-
cepts only after it has found a 1-certificate, which means
that it never accepts a negative input.

To see the algorithm always accepts a positive input, let
the input x be positive with marked column b. Consider one
iteration of the loop in step 2. If j = b, then the algorithm
accepts in VerifyColumn(j) on step 2(a). Now assume j 6= b.
Then, column j contains a zero with a back pointer to b,
hence, the algorithm does not reject on step 2(c). The
algorithm also does not reject on step 2(d) since, when k = 0,
the condition in 2(b) applies.

Let us now estimate the expected number of queries made
by the algorithm. Condition in step 2(b) is obviously not
satisfied on the first iteration of the loop. On a specific later

Algorithm 2 A quantum algorithm for the function fn,m

VerifyColumn(j) tests whether column j is marked

1. Use Grover’s search to find an element a in column j
with nonnull left or right pointer. If no element found,
reject. If val(xa) = 0, reject.

2. Use Grover’s search to verify that all elements in column
j except a are equal to (1,⊥,⊥,⊥). If not, reject.

3. Use Grover’s search (over all j ∈ [m]\{b}) to check
that conditions (3) and (4) of the definition of fn,m are
satisfied. If they are, accept. Otherwise, reject.

FindGoodBackPointer(j, k) if column j has ≤ 11
10
k zeroes

and one of them has a back pointer to an all-1 column, finds
a column containing ≤ k/2 zeroes with probability ≥ 1/2k.

1. Use Grover’s search to find a zero v in column j.

2. If bpoint(xv) = ⊥, return ‘False’. Otherwise c ←
bpoint(xv).

3. Execute Grover’s search for a zero in column c, assum-
ing there are ≥ k/2 of them. Return ‘False’ if Grover’s
search finds a zero, and ’True’ otherwise.

Main procedure of the algorithm

1. Let j be an arbitrary column in [m].

2. Repeat the following actions. If the loop does not finish
after 10 logn iterations, reject.

(a) Use quantum counting to estimate the number of
zeroes in column j with relative accuracy 1/10.
Let k be the estimate. If k = 0, VerifyColumn(j).

(b) Execute quantum amplitude amplification on the
FindGoodBackPointer(j, k) subroutine amplify-
ing for the output ‘True’ of the subroutine and
assuming its success probability is at least 1/2k.
Let c be the corresponding value of the subroutine
after amplification.

(c) Set j ← c. Repeat the loop.

iteration, the probability this condition is satisfied is at most
1/(nm)2 by our definition of TestColumn(c, k). Since the
loop is repeated O(log n) times, the contribution of step 2(b)
to the complexity of the algorithm is o(1).

If step 2(b) is not invoked, we have the following complexity
estimates. VerifyColumn uses O(m) queries, and it is called
at most once. Apart from VerifyColumn, Step 2(a) uses n
queries. Since |C| ≤ k on step 2(c), the number of queries in

this step is Õ(n). Since there is only a logarithmic number
of iterations of the loop in step 2, the total number of queries

is Õ(n+m).

Theorem 5. The quantum query complexity Q(fn,m) =

Õ(
√
n+
√
m).

Proof. The algorithm, Algorithm 2, is a quantum coun-
terpart of Algorithm 1. We assume that every elementary
quantum subroutine of the algorithm (e.g. Grover’s search
or quantum counting) is repeated sufficient number of times
to reduce its error probability to at most 1/(nm)2. This
requires a logarithmic number of repetitions, which can be

absorbed into the Õ factor. Since the algorithm makes less
than O(n+m) queries, we may further assume that all the
elementary quantum subroutines are performed perfectly.

The analysis is similar to Theorem 4. Again, the algorithm
only accepts from VerifyColumn, which is called at most once.
The three steps of VerifyColumn correspond to the three
conditions defining a 1-input. Any negative input violates
one of these conditions, and thus will fail one of these tests.

Now suppose we have a positive input x with marked
column b. In this case, each non-marked column contains a
zero with a back pointer to the marked column b. We want
to argue that the algorithm accepts x with high probability.
The following claim is the cornerstone of our analysis.

Claim 6. If the input x is positive and column j contains
at most 11

10
k zeroes, then step 2(b) of the algorithm finds a

column c containing at most k/2 zeroes with high probability.

Proof. We first claim that FindGoodBackPointer(j, k)
returns ‘True’ with probability at least 1/2k. Indeed, we
assumed that the probability Grover’s search on step 1 fails
is negligible. Thus, with high probability, before execution of
step 2, v is chosen uniformly at random from the at most 11

10
k

zeroes in column j. One of these zeroes has a back pointer
to the marked column b. If it is chosen, step 3 returns ‘True’
with certainty, which proves our first claim.

Thus, amplitude amplification in step 2(b) of the main
procedure will generate the ‘True’-portion of the final state
of the FindGoodBackPointer subroutine. Again, since we
assume that the error probability of Grover’s search on step 3
of FindGoodBackPointer is negligible, we may assume this
portion of the state only contains columns c with at most
k/2 zeroes.

Consider the loop in step 2. We may assume quantum
counting is correct in step 2(a). If j = b, then VerifyColumn(j)
is called in step 2(a), and the algorithm accepts with high
probability. So, consider the case j 6= b. Column j contains
a zero, hence, with high probability, VerifyColumn is not
executed on step 2(a). Thus, by Claim 6, the number of zeroes
in column j gets reduced by a factor of 1.1/2. Therefore,
after 10 logn iterations, the number of zeroes in column j
becomes zero, which means j = b, and the algorithm accepts
with high probability.

807



We now estimate the complexity of the algorithm. Steps (1)

and (2) of VerifyColumn take Õ(
√
n) queries. For step (3)

of VerifyColumn, we have to check that the tree of point-
ers rooted from xa satisfies conditions (3) and (4) from the
definition of fn,m. We can check the correctness of a sin-
gle path from the root to a leaf with O(logm) (classical)
queries. Since there are m many paths, checking them all

with Grover’s search takes Õ(
√
m) many queries. Overall,

VerifyColumn takes Õ(
√
n+
√
m) queries.

Grover’s search in the FindGoodBackPointer(j, k) proce-

dure uses Õ(
√
n/k) queries. Since the success probability of

FindGoodBackPointer(j, k) is at least 1/2k, amplitude am-

plification repeats FindGoodBackPointer(j, k) Õ(
√
k) times

and the complexity of step 2(b) is Õ(
√
n). Quantum counting

in step 2(a) also uses Õ(
√
n) queries.

Since we run the main loop at most O(log n) many times,

the total complexity of the algorithm is Õ(
√
n+
√
m).

Corollary 7. There is a total boolean function f such

that R0(f) = Õ(D(f)1/2) and Q(f) = Õ(D(f)1/4).

Proof. We first get these separations for a non-boolean
function. Take fn,m with n = 2m. Then the zero-error

randomized query complexity is Õ(n) by Theorem 4, the

quantum query complexity is Õ(
√
n) by Theorem 5, and the

deterministic query complexity is Ω(n2) by Theorem 2. Since
the size of the alphabet Σ is polynomial, this also gives the
separations for the associated boolean function f̃2m,m.
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Figure 5: An example of a 1-certificate for the func-
tion g8,8. The tree T is like in Figure 3 on the left.
The center of a cell xi,j shows val(xi,j), the bottom
of the cell shows bpoint(xi,j) and the bottom left and
right sides show lpoint(xi,j) and rpoint(xi,j), respec-
tively. Values and pointers that are not shown can
be chosen arbitrarily. It is crucial that m/2 leaves
point to the root a of the tree, and m/2 − 1 leaves
point to something different.

4. SEPARATIONS AGAINST LAS VEGAS
COMPLEXITY

In this section, we define a variant of the fn,m function

from the last section. Let n, m, M , M̃ , T and T (j) be as

previously. The input alphabet is Σ = {0, 1} × M̃ × M̃ × M̃ ,
where we keep the names and notation of left, right and back
pointers. Note that the back pointers now point to a cell of
M , not a column.

Let m be even. The function gn,m : ΣM → {0, 1} is defined
like the function fn,m in Section 3 with condition 4 replaced
by the following condition

4′ The set G =
{
j ∈ [m] \ {b}

∣∣bpoint
(
x`j
)

= a
}

is of size
exactly m/2.

For an illustration refer to Figure 5.

Theorem 8. If n and m are sufficiently large, the Las
Vegas randomized query complexity R0(gn,m) = Ω(nm).

Proof. We construct a hard probability distribution on
negative inputs such that any Las Vegas randomized algo-
rithm has to make Ω(nm) queries in expectation to reject
an input sampled from it. Each input x = (xi,j) in the hard
distribution is specified by a function `x : [m] → [n]. The
function specifies the positions of the leaves of the tree T in
a possible positive instance. The definition of x is as follows

xi,j =

{
(0,⊥,⊥,⊥), if i = `x(j);

(1,⊥,⊥,⊥), otherwise.
(1)

The hard distribution is formed in this way from the uniform
distribution on all functions `x. Thus, all pointers are null
pointers, and each column contains exactly one zero element
in a random position. The theorem obviously follows from
the following two results.

Claim 9. Any Las Vegas algorithm for the function gn,m
can reject an input x from the hard distribution (1) only if
it has found at least m/2 zeroes or it has queried more than
n(m− 1)− 2m elements.

Lemma 10. Assume a Las Vegas algorithm can reject an
input x from the hard distribution (1) only if it has found
Ω(m) zeroes or it has queried Ω(nm) elements. Then, the
query complexity of the algorithm is Ω(nm).

Proof of Claim 9. Assume these conditions are not
met. Then, we can construct a positive input y that is
consistent with the answers to the queries obtained by the
algorithm so far.

Let B ⊆ [m] be the set of columns where no zero was
found. By assumption, |B| ≥ m/2 + 1. Choose an element
b ∈ B and a subset G ⊆ B \ {b} of size m/2. Define
a = (`x(b), b), set the value of ya to 1 and its back pointer
to ⊥. For each column j ∈ G, define y`x(j),j = (0,⊥,⊥, a).
Finally, for the remaining columns j ∈ B \ (G ∪ {b}), define
y`x(j),j = (0,⊥,⊥,⊥).

Remove from the tree T the leaf with label b. Let the
resulting graph be T ′. Put the root of T ′ into a, and, for
each j 6= b, put the leaf of T ′ with label j into (`x(j), j). Put
the remaining nodes of T ′ into the still unqueried cells of
M preserving the structure of the graph. Set their values
to 0 and their back pointers to ⊥. Set all the remaining
cells to (1,⊥,⊥,⊥). The resulting input y is positive and
consistent with the answers to the queries obtained by the
algorithm.
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Proof of Lemma 10. By Theorem 1 it suffices to show
that any deterministic algorithm D makes an expected Ω(nm)
number of queries to find Ω(m) zeroes in an input from the
hard distribution.

Consider a node S of the decision tree D. Call a column
j ∈ [m] compromised in S if either a zero was found in it, or
more than n/2 of its elements were queried. For an input x,
let At(x) be the number of compromised columns on input x
after t queries. Similarly, let Bt(x) be the number of queries
made outside the compromised columns. Let us define

It(x) = At(x) +
2

n
Bt(x).

Note that At(x) can only increase as t increases, whereas
Bt(x) can increase or decrease.

Claim 11. For a non-negative integer t, we have

Ex
[
It+1(x)

]
− Ex

[
It(x)

]
≤ 4

n
, (2)

where the expectation is over the inputs in the hard distribu-
tion.

Proof. Fix t. We say two inputs x and y are equivalent if
they get to the same vertex of the decision tree after t queries.
We prove that (2) holds with the expectation taken over each
of the equivalency classes. Fix an equivalence class, let x be
an input in the class, and (i, j) be the variable queried by D
on the (t+ 1)st query on the input x. Note that (i, j), At(x)
and Bt(x) do not depend on the choice of x.

Consider the following cases, where each case excludes the
preceding ones. All expectations and probabilities are over
the uniform choice of an input in the equivalence class.

• The jth column is compromised. Then It+1(x) = It(x),
and we are done.

• After the cell (i, j) is queried, more than half of the
cells in the jth column have been queried. Then, At(x)
increases by 1, and Bt(x) drops by bn/2c. Hence,
Ex
[
It+1(x)

]
≤ Ex

[
It(x)

]
+ 1/n.

• Consider the remaining case. We have Prx[i = `x(j)] ≤
2/n. If i = `x(j), then At(x) grows by 1, and Bt(x) can
only decrease. If i 6= `x(j), then At(x) does not change,
and Bt(x) grows by 1. Thus, Ex

[
It+1(x)

]
−Ex

[
It(x)

]
≤

2
n

+ 2
n

= 4
n

.

Now we finish the proof of Lemma 10. Assume the algo-
rithm can reject an input x only if it has found c1m zeroes or
it has queried c2nm elements for some constants c1, c2 > 0.

Let t = bc1nm/8c. Clearly, Ex[I0(x)] = 0 for all x.
Claim 11 implies Ex[It(x)] ≤ c1m/2. By Markov’s inequality,
Prx
[
It(x) ≥ c1m

]
≤ 1/2. By our assumption, the probability

the algorithm D has not rejected x after t′ = min{t, c2nm}
queries is at least 1/2. Hence, the expected number of queries
made by the algorithm is at least t′/2 = Ω(nm).

Theorem 12. For one-sided error randomized and exact
quantum query complexity, we have R1(gn,m) = Õ(n + m)

and QE(gn,m) = Õ(n+m).

Proof. We reduce the problem to the task of evaluating
the partial function h on m bits defined by the following
relations: h(0m) = 0, and h(z) = 1 whenever |z| = m/2.
This function can be evaluated in O(1) queries both by a

randomized algorithm with 1-sided error and by an exact
quantum algorithm.

For a positive input x, we call a column j ∈ [m] good iff
it belongs to the set G from Condition 4′ on Page . Thus,
a positive input has exactly m/2 good columns, whereas a
negative one has none. Theorem 12 follows immediately from
the following lemma.

Lemma 13. There exists a deterministic subroutine that,
given an index j ∈ [m], accepts iff the column j is good in

Õ(n+m) queries.

Indeed, we use the subroutine from Lemma 13 as the input
to the algorithm evaluating the function h. For example,
for an algorithm with one-sided error, we choose an index
j ∈ [m] uniformly at random, and execute the subroutine
of Lemma 13. If the input is negative, we always reject. If
the input is positive, we accept with probability exactly 1/2.
The exact quantum algorithm is obtained similarly, using
the Deutsch-Jozsa algorithm.

Proof of Lemma 13. The subroutine is described in Al-
gorithm 3. In the subroutine, I stores the set of (the first
indices) of the cells in column j that can potentially contain
the element `j back pointing to the special element a. The
set B contains potentially marked columns.

Algorithm 3 A deterministic subroutine testing whether a
column j is good

1. Let I ← [n] and B ← [m].

2. While I 6= ∅ and |B| ≥ 2, repeat the following:

(a) Let i be the smallest element of I. Let a ←
bpoint(xi,j). If a = ⊥, remove i from I, and
continue with the next iteration of the loop.

(b) Let j be the smallest number of a column in B
that does not contain a. Follow the pointers from
a as specified by the sequence T (j). Let `j be the
endpoint.

(c) If `j exists, is located in column j and its value is
0, remove j from B. Otherwise, remove i from I.

3. If |B| ≥ 2, reject. Otherwise, let b be the only element
of B. Verify column b using a procedure similar to that
in Algorithm 1.

4. If column b passes the verification, and j belongs to the
set G from Condition 4′ on Page , accept. Otherwise,
reject.

As ensured by step 4, the subroutine only accepts if the
input is positive (column b passes the verification), and the
column j is good. Hence, we get no false positives. On the
other hand, assume the input is positive with the marked
column b, column j is good, and `j = (i, j). In this case, i
cannot get removed from I due to goodness of column j and
Condition 3 on Page , and b never gets eliminated from B
as it contains no zeroes. Thus, the only possibility to exit
the loop on step 2 is to have B = {b}. In this case, b passes
the verification, and the algorithm accepts since column j is
good. Hence, we get no false negatives as well.

The query complexity of each iteration of the loop in
step 2 is O(logm). Also, with each iteration, either I or
B get reduced by one element. Hence, the total number of
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iterations of the loop does not exceed n + m. Finally, the
verification in step 3 requires O(n+m) queries. Thus, the

query complexity of the algorithm is Õ(n+m).

Corollary 14. There is a total boolean function f with

R1(f) = Õ(R0(f)1/2) and QE(f) = Õ(R0(f)1/2).

Proof. We first obtain this separation for a non-boolean
function. Take gn,m with n = m. The one-sided error

randomized and exact quantum query complexity is Õ(n) by
Theorem 12, and the Las Vegas query complexity is Ω(n2) by
Theorem 8. Since the size of the alphabet Σ is polynomial,
this also gives the separations for the associated boolean
function g̃n,n.

5. OTHER SEPARATIONS AGAINST RAN-
DOMIZED COMPLEXITY

In this section we define another modification of the func-
tion used in Section 3. Let n, m, M , M̃ and T be as in
Section 3, and let k : 1 ≤ k < m be an integer. The new
function hk,n,m : ΣM → {0, 1} is defined as follows. The

input alphabet is Σ = {0, 1} × M̃ × M̃ × M̃ . For v ∈ Σ, we
call the elements of the quadruple the value, the left pointer,
the right pointer and the internal pointer of xi,j , respectively.
We use notation val(v), lpoint(v), rpoint(v), and ipoint(v)
for them in this order.

For an input x = (xi,j), we have hk,n,m(x) = 1 if an only
if the following conditions are satisfied (for an illustration
refer to Figure 6):
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Figure 6: An example of a 1-certificate for the h3,8,8

function. The tree T is like in Figure 3 on the left.
The center of a cell xi,j shows val(xi,j), the top of
the cell shows ipoint(xi,j) and the left and right sides
show lpoint(xi,j) and rpoint(xi,j), respectively. Values
and pointers that are not shown can be chosen arbi-
trarily.

1. There are exactly k columns b1, . . . , bk with val(xi,bs) =
1 for all i ∈ [n] and each s ∈ [k]. We refer to these as
the marked columns.

2. Each marked column bs contains a unique cell as such
that xas 6= (1,⊥,⊥,⊥). We call as a special element.

3. We have ipoint(xas) = as+1 for all s ∈ [k − 1], and
ipoint(xak) = a1. Also, lpoint(xas) = lpoint(xat) and
rpoint(xas) = rpoint(xat) for all s, t ∈ [k].

4. For each non-marked column j ∈ [m] \ {b1, . . . , bk},
let `j be the end of the path which starts at a special
element as (whose choice is irrelevant) and follows the
pointers lpoint and rpoint as specified by the sequence
T (j). We require that `j exists (no pointer on the path
is ⊥), `j is in the jth column, and val(x`j ) = 0.

We use this function in two different modes. The first one is
the k = 1 case. Then, h1,n,m is essentially the fn,m function
from Section 3 with the back pointers removed, i.e., it need
not satisfy condition (4). In this mode, the function is hard
for a Monte Carlo algorithm, but still has low approximate
polynomial degree.

The second mode is the general k case. In this mode,
the function is hard for a Las Vegas algorithm, but feasible
for quantum algorithms. The proof of the lower bound is
similar to Section 4. We need a different function because
Algorithm 3 in Theorem 12 cannot be efficiently quantized.

Theorem 15. If n and m are sufficiently large, the Las
Vegas randomized query complexity R0(hk,n,m) = Ω(nm) for
any k < m/2.

Proof. The proof is similar to the proof of Theorem 8.
We define the hard distribution (1) in exactly the same
way. The theorem follows from Lemma 10 and the following
claim.

Claim 16. Any Las Vegas algorithm evaluating the func-
tion hk,n,m can reject an input x from the hard distribu-
tion (1) only if it has found m−k+1 zeroes or it has queried
more than n(m− k)− 2m elements.

Proof. Assume these conditions are not met. Then, we
can construct a positive input y that is consistent with the
answers to the queries obtained by the algorithm so far.

Indeed, choose a set B = {b1, . . . , bk} of columns where
no zero was found. Define as =

(
`x(bs), bs

)
for each s ∈ [k].

These elements have not been queried yet. Define val(yas) =
1 for all s, as well as ipoint(yas) = as+1 for all s ∈ [k − 1],
and ipoint(yak ) = a1.

Remove from the tree T the leaves with labels in B and
the root. Let the resulting graph be T ′. For each j /∈ B,
put the leaf of T ′ with label j into (`x(j), j), set its value
to 0 and all pointers to ⊥. Put the remaining nodes of T ′

into the still unqueried cells of M preserving the structure
of the graph. Set their value to 0 and their internal pointers
to ⊥. Let u and v be the cells where the left and the
right child of the root of T went. For each s ∈ [k], set
lpoint(yas) = u and rpoint(yas) = v. Set all the remaining
cells to (1,⊥,⊥,⊥). The resulting input is positive, and
consistent with the answers to the queries obtained by the
algorithm.

Theorem 17. If n and m are sufficiently large, the ran-
domized query complexity R(h1,n,m) = Ω

(
nm

logm

)
.
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Note that Theorem 17 only considers the case k = 1.
It is proven in a similar fashion to Theorem 15 using the
additional fact that the expected size of a subtree rooted in
a node of a balanced tree is logarithmic. The proof is given
in Section 6.

5.1 Quantum versus Las Vegas
Theorem 18. For the quantum query complexity, we have

Q(hk,n,m) = Õ
(√

nm/k +
√
kn+ k +

√
m
)
.

Proof. We search for a column consisting only of ones us-
ing Grover’s search. Testing one column takes O(

√
n) queries.

Also, in the positive case, there are k such columns, so we
will find one after O(

√
nm/k) queries with high probability.

If we do not find such a column, we reject.
In case we find a marked column j, we use Grover’s search

to check that it satisfies condition (2) of the definition of
hk,n,m. This requires O(

√
n) queries. Let a be the corre-

sponding special element. We follow the internal pointer
from a to find all the special elements and to check that
condition (3) of the definition of hk,n,m is satisfied. This
requires k queries. We use Grover’s search to check that all
the remaining elements of the marked columns are equal to
(1,⊥,⊥,⊥). This requires O(

√
kn) queries.

After that, we check condition (4) of the definition of
hk,n,m. Since there are less than m elements `j to check and
each one can be tested in O(logm) queries, Grover’s search

can check this condition in Õ(
√
m) queries.

Corollary 19. There is a total boolean function f with

Q(f) = Õ(R0(f)1/3).

Proof. We first obtain the separation for a non-boolean
function. Take hk,n,m with k = n and m = n2. Then

the quantum complexity is Õ(n) by Theorem 18, and the
Las Vegas randomized complexity is Ω(n3) by Theorem 15.
Since the size of the alphabet Σ is polynomial, we obtain the
required separations for the associated boolean function.

5.2 Exact Quantum versus Monte Carlo
Theorem 20. For the exact quantum query complexity,

we have QE(hk,n,m) = O(n
√
m/k + kn+m).

Proof. We use the exact version of Grover’s search to find
a column consisting only of ones. In the positive case, there
are exactly k such columns, and testing each column takes n
queries. Thus, the complexity of this step is O(n

√
m/k).

If we find a marked column j, we query all xi,j for i ∈ [n]
to check that it satisfies condition (2) of the definition of
hk,n,m. Let a be the corresponding special element. We
follow the internal pointer from a to check that condition
(3) is also satisfied and to find all the marked columns. We
then check condition (2) on them as well. All this requires
kn queries.

After that, we follow the left and right pointers from a,
and check that condition (4) of the definition of hk,n,m is
satisfied. This requires O(m) queries.

Corollary 21. There exists a total boolean function f

with QE(f) = Õ(R(f)2/3).

Proof. Take h1,n,m with m = n2. Then the exact quan-
tum query complexity is O(n2) by Theorem 20 and the Monte

Carlo randomized query complexity is Ω̃(n3) by Theorem 17.
Since the size of the alphabet Σ is polynomial, this also gives
the separation for the associated boolean function h̃1,n,m.

5.3 Approximate Polynomial Degree versus
Monte Carlo

Theorem 22. Let h̃1,n,m : {0, 1}nmdlog |Σ|e → {0, 1} be
the boolean function associated to h1,n,m. The approximate

polynomial degree d̃eg(h̃1,n,m) = Õ(
√
n+
√
m)

Proof. For j ∈ [m], let gj : {0, 1}nmdlog |Σ|e → {0, 1} be

defined as follows. The value gj(x) is 1 if h̃1,n,m(x) = 1, and
j is the marked column. Otherwise, gj(x) = 0.

For each j ∈ [m], the function gj(x) can be evaluated in

Õ(
√
n+
√
m) quantum queries using a variant of the Verify-

Column procedure in Algorithm 2. Repeating this quantum
algorithm O(logm) times, we may assume that its error
probability is at most 1/(10m). We then use the connection
between quantum query algorithms and polynomial degree
of [3] to construct a polynomial pj(x) of degree 2T (where
T is the number of queries) that is equal to the acceptance
probability of this algorithm. The polynomial pj(x) is of

degree Õ(
√
n +
√
m) and satisfies 0 ≤ pj(x) ≤ 1/(10m) if

gj(x) = 0, and 1− 1/(10m) ≤ pj(x) ≤ 1 otherwise.
We then define a polynomial p(x) =

∑
j pj(x) as follows.

If h1,n,m(x) = 0, then all gj(x) = 0 and 0 ≤ p(x) ≤ 1/10.
Otherwise, there is unique b ∈ [m] such that gb(x) = 1, and
all other gj(x) = 0. In this case, 1−1/(10m) ≤ p(x) ≤ 11/10.
Thus, p(x) is an approximating polynomial to h1,n,m and its

degree is Õ(
√
n+
√
m).

Corollary 23. There is a total boolean function f with

d̃eg(f) = Õ(R(f)1/4).

Proof. Take h̃1,n,m from Theorem 22 with m = n. Then

the approximate degree is Õ(
√
n), and the Monte Carlo

randomized query complexity is Ω(n2) by Theorem 17.

6. PROOF OF THEOREM 17

Lemma 24. Assume T is a balanced binary tree with m
leaves, and at least a 1/4 fraction of its nodes are marked.
Let u be sampled from all the marked nodes of T uniformly
at random. The expected size of the subtree rooted at u does
not exceed C0 logm for some constant C0.

Proof. Let us first consider the case when T is a complete
balanced binary tree with 2k − 1 nodes and all its nodes are
marked. Then, the expected size of the subtree is (where i is
the height of the node u)

k∑
i=1

2k−i

2k − 1
· (2i − 1) ≤ k. (3)

In the general case, T can be embedded into a complete
balanced binary tree T ′ with 2k−1 nodes, where k = dlogme+
1. Mark in T ′ all the nodes marked in T . Again, an Ω(1)
fraction of the nodes is marked. Hence, for each node u, a
probability that u is sampled from the marked nodes of T ′ is
at most a constant times its probability to be sampled from
all the nodes of T ′. Thus, the expected size of the subtree is
at most a constant times the value in (3).

By Theorem 1, it suffices to construct a hard distribution
on inputs and show that any deterministic decision tree that
computes h1,n,m with distributional error less than 2/10
on the hard distribution makes an Ω(nm/ logm) expected
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number of queries. By Markov’s inequality, it suffices to show
that any deterministic decision tree that performs this task
with error 3/8 has depth Ω(nm/ logm). We now define the
hard distribution.

Let T be the balanced binary tree from the definition of
h1,n,m. Denote by r the root of the tree, and by TN the set
of internal nodes of T . The latter has cardinality m− 1.

An input x = (xi,j) is defined by a quadruple (vx, πx, `
L
x, `

N
x ),

where

• vx ∈ {0, 1}, it will be the value of the function h1,n,m

on x;

• πx : TN → [m] is an injection, it specifies to which
columns the internal nodes of T will go; and

• `Lx : [m]→ [n] and `Nx : [m]→ [n] are functions satisfying
`Lx(j) 6= `Nx (j) for each j ∈ [m]. They specify the rows
where the leaves and the internal nodes of the tree T
land in column j.

The definition is as follows. Remove the leaf with the label
πx(r) from T . For each column j 6= πx(r), put the leaf j
into the cell

(
`Lx(j), j

)
, set all its pointers to ⊥ and its value

to 0. Then, for each internal node u of the tree, put it at(
`Nx (πx(u)), πx(u)

)
, set its left and right pointers so that the

structure of the tree is preserved. If u 6= r, assign its internal
pointer to ⊥, and set its value to 0. Otherwise, if u = r,
assign its internal pointer to itself, and set its value to vx.
Assign the quadruple (1,⊥,⊥,⊥) to all other cells. It is easy
to see that the value of the function h1,n,m on this input is
vx.

The hard distribution is defined as the uniform distribution
over the quadruples (vx, πx, `

L
x, `

N
x ) subject to the constraint

`Lx(j) 6= `Nx (j) for each j ∈ [m].

Let D be a deterministic decision tree of depth

D =
nm

64C0 logm
.

We will prove that D errs on x, sampled from the hard
distribution, with probability at least 3/8.

Let x be an input from the hard distribution, and consider
the vertex S of D after t queries to x. We say that a column
j ∈ [m] and the corresponding tree element π−1

x (j) (if it
exists) are compromised on the input x after t queries if at
least one of the following three conditions is satisfied:

• one of the cells (`Lx(j), j) and (`Nx (j), j) has been queried;

• more than a half of the cells in the jth column have
been queried; or

• in the tree T there exists an ancestor u of π−1
x (j) such

that one of the above two conditions is satisfied for
πx(u).

Let At(x) denote the number of compromised columns,
and Bt(x) denote the number of cells queried outside the
compromised columns, both after t queries. Consider the
following quantity

It(x) = min

{
At(x) +

4C0 logm

n
Bt(x),

m

2

}
.

Note that At(x) can only increase as t increases, whereas
Bt(x) can increase or decrease.

Claim 25. For a non-negative integer t, we have

Ex
[
It+1(x)

]
− Ex

[
It(x)

]
≤ 8C0 logm

n
, (4)

where the expectation is over the inputs in the hard distribu-
tion.

We will prove Claim 25 a bit later. Now let us show how
it implies the theorem. Clearly, I0(x) = 0 for all x. Claim 25
implies that Ex[ID(x)] ≤ m/8. By Markov’s inequality, the
probability that ID(x) ≥ m/2 is at most 1/4.

Let x be an input satisfying ID(x) < m/2. Thus, x has
less than m/2 compromised columns after D queries. In
particular, the variable a =

(
`Nx (πx(r)), πx(r)

)
, corresponding

to the root of T , has not been queried. Let y be the input
given by (1 − vx, πx, `

L
x, `

N
x ). They only differ in a, and

h1,n,m(x) 6= h1,n,m(y). Hence, the decision tree D errs on
exactly one of them.

This means that D errs on x sampled from the hard dis-
tribution with probability at least 3/8.

Proof of Claim 25. We divide the inputs of the hard
distribution into equivalence classes, and prove that (4) holds
with the expectation over each of the classes. We say that two
inputs x and y are equivalent if the following three conditions
hold:

• after t queries, the decision tree D gets to the same
vertex on x and y;

• the set C of compromised columns is the same in x and
y;

• for all j ∈ C, π−1
x (j) = π−1

y (j).

Fix an equivalence class, let x be an input in the class,
and (i, j) be the variable queried by D on the (t+ 1)st query
on the input x. Note that (i, j), as well as At(x) and Bt(x)
do not depend on the choice of x. Consider the following
cases, where each case excludes the preceding ones. All
expectations and probabilities are over the uniform choice of
an input in the equivalence class.

• We have It(x) = m/2. Then, It+1(x) ≤ m/2, and we
are done.

• The jth column is compromised. Then It+1(x) = It(x),
and we are done.

• After the cell (i, j) is queried, more than half of the cells
in the jth column have been queried. As It(x) < m/2,
less than half of the columns are compromised. By
Lemma 24 with non-compromised nodes marked, the
expected growth of At(x) is at most C0 logm. On the
other hand, the drop in Bt(x) is at least bn/2c. Hence,
Ex
[
It+1(x)

]
≤ Ex

[
It(x)

]
.

• Consider the remaining case. We have

Prx
[
i ∈
{
`Lx(j), `Nx (j)

}]
≤ 4/n.

– If i is one of `Lx(j) or `Nx (j), then, as in the previous
case, the expected growth of At(x) is at most
C0 logm, and Bt(x) can only decrease.

– If i 6= ax(j), then At(x) does not change, and
Bt(x) grows by 1.

Thus,

Ex
[
It+1(x)

]
− Ex

[
It(x)

]
≤ 4

n
· C0 logm+

4C0 logm

n

=
8C0 logm

n
.
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