
Exact Quantum Query Complexity of EXACT and
THRESHOLD∗

Andris Ambainis, Jānis Iraids, and Juris Smotrovs

Faculty of Computing, University of Latvia,
Raiņa bulvāris 19, Rı̄ga, LV-1586, Latvia
andris.ambainis@lu.lv, janis.iraids@gmail.com, juris.smotrovs@lu.lv

Abstract
A quantum algorithm is exact if it always produces the correct answer, on any input. Coming
up with exact quantum algorithms that substantially outperform the best classical algorithm has
been a quite challenging task.

In this paper, we present two new exact quantum algorithms for natural problems:
for the problem EXACTn

k in which we have to determine whether the sequence of input bits
x1, . . . , xn contains exactly k values xi = 1;
for the problem THRESHOLDn

k in which we have to determine if at least k of n input bits
are equal to 1.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Quantum query algorithms, Complexity of Boolean functions

Digital Object Identifier 10.4230/LIPIcs.TQC.2013.263

1 Introduction

We consider quantum algorithms in the query model. The algorithm needs to compute a
given Boolean function f : {0, 1}n → {0, 1} by querying its input bits until it is able to
produce the value of the function, either with certainty, or with some error probability. The
complexity of the algorithm is measured as the number of queries it makes (other kinds of
computation needed to produce the answer are disregarded).

In the bounded error setting where the algorithm is allowed to give an incorrect answer
with probability not exceeding a given constant ε, 0 < ε < 1

2 , many efficient quantum
algorithms are known, with either a polynomial speed-up over classical algorithms (e.g.,
[12, 1, 9, 16, 4]), or, in the case of partial functions, even an exponential speed-up (e.g.,
[18, 17]).

Less studied is the exact setting where the algorithm must give the correct answer with
certainty. Though for partial functions quantum algorithms with exponential speed-up are
known (for instance, [8, 5]), the results for total functions up to recently have been much
less spectacular: the best known quantum speed-up was just by a factor of 2.

Even more, as remarked in [13], all the known algorithms achieved this speed-up by the
same trick: exploiting the fact that XOR of two bits can be computed quantumly with one
query, while a classical algorithm needs two queries [8, 7, 10].

A step forward was made by [13] which presented a new algorithm achieving the speed-up
by a factor of 2, without using the “XOR trick”. The algorithm is for the Boolean function

∗ This research was supported by EU FP7 projects QCS, QALGO and MQC. The
presentation of the paper at the conference was supported by ERDF Project No.
2010/0202/2DP/2.1.1.2.0/10/APIA/VIAA/013.

T Q C

© Andris Ambainis, Jānis Iraids, and Juris Smotrovs;
licensed under Creative Commons License CC-BY

8th Conference on Theory of Quantum Computation, Communication and Cryptography.
Editors: Simone Severini and Fernando Brandao; pp. 263–269

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.TQC.2013.263
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

264 Exact Quantum Query Complexity of EXACT and THRESHOLD

EXACT4
2 which is true iff exactly 2 of its 4 input bits are equal to 1. It computes this

function with 2 queries, while a classical (deterministic) algorithm needs 4 queries.
This function can be generalized to EXACTn

k in the obvious way. Its deterministic
complexity is n (due to its sensitivity being n, see [15]). [13] conjectured that its quantum
query complexity is max {k, n− k}.

In this paper we prove the conjecture. We also solve the problem for a similar function,
THRESHOLDn

k which is true iff at least k of the input bits are equal to 1. When n = 2k−1,
this function is well-known as the MAJORITY function. The quantum query complexity of
THRESHOLDn

k turns out to be max {k, n− k + 1}, as conjectured in [13].
In a recent work [2], a function f(x1, . . . , xn) with the deterministic query complexity

n and the exact quantum query complexity O(n.8675...) was constructed. The quantum
advantage that is achieved by our algorithms is smaller but we think that our results are
still interesting, for several reasons.

First, we present quantum algorithms for computational problems that are natural and
simple to describe. Second, our algorithms contain new ideas which may be useful for de-
signing other exact algorithms. Currently, the toolbox of ideas for designing exact quantum
algorithms is still quite small. Expanding it is an interesting research topic.

2 Technical Preliminaries

We denote [m] = {1, 2, . . . ,m}. We assume familiarity with basics of quantum computation
[14]. We now briefly describe the quantum query algorithm model.

Let f : {0, 1}n → {0, 1} be the Boolean function to compute, with the input bit string
x = x1x2 . . . xn. The quantum query algorithm works in a Hilbert space with some fixed
basis states. It starts in a fixed starting state, then performs on it a sequence of unitary
transformations U1, Q, U2, Q, . . . , Ut, Q, Ut+1. The unitary transformations Ui do not
depend on the input bits, while Q, called the query transformation, does, in the following
way. Each of the basis states corresponds to either one or none of the input bits. If the
basis state |ψ〉 corresponds to the i-th input bit, then Q |ψ〉 = (−1)xi |ψ〉. If it does not
correspond to any input bit, then Q leaves it unchanged: Q |ψ〉 = |ψ〉. For convenience in
computations, we denote x̂i = (−1)xi .

Finally, the algorithm performs a full measurement in the standard basis. Depending on
the result of the measurement, it outputs either 0 or 1 which must be equal to f(x).

By the principle of delayed measurement, sometimes a measurement performed in the
middle of computation is equivalent to it being performed at the end of computation [14].
We will use that in our algorithms, because they are most easily described as recursive
algorithms with the following structure: perform unitary U1, query Q, unitary U2, then
measure; depending on the result of measurement, call a smaller (by 2 input bits) instance of
the algorithm. The principle of delayed measurement ensures that such recursive algorithm
can be transformed by routine techniques into the commonly used query algorithm model
described above.

The minimum number of queries made by any quantum algorithm computing f is denoted
by QE(f). We use D(f) to denote the minimum number of queries used by a deterministic
algorithm that computes f .

A. Ambainis, J. Iraids, and J. Smotrovs 265

3 Algorithm for EXACT

I Definition 1. The function EXACTn
k is a Boolean function of n variables being true iff

exactly k of the variables are equal to 1.

I Theorem 2.

QE(EXACT2k
k) ≤ k

Proof. We present a recursive algorithm. When k = 0 the algorithm returns 1 without
making any queries. Suppose k = m. For the recursive step we will use basis states |0〉, |1〉,
. . . , |n〉 and |i, j〉 with i, j ∈ [2m], i < j. The i-th input bit will be queried from the state
|i〉. We begin in the state |0〉 and perform a unitary transformation U1:

U1 |0〉 →
2m∑
i=1

1√
2m
|i〉.

Next we perform a query:

2m∑
i=1

1√
2m
|i〉 Q−→

2m∑
i=1

x̂i√
2m
|i〉.

Finally, we perform a unitary transformation U2, such that

U2 |i〉 =
∑
j>i

1√
2m
|i, j〉 −

∑
j<i

1√
2m
|j, i〉+ 1√

2m
|0〉

One can verify that such a unitary transformation exists by checking the inner products:

1) for any i ∈ [2m],

〈i|U†2U2 |i〉 =
∑
j>i

1
2m +

∑
j<i

1
2m + 1

2m = 1.

2) for any i, j ∈ [2m], i 6= j,

〈j|U†2U2 |i〉 =

∑
l>j

1√
2m
〈j, l| −

∑
l<j

1√
2m
〈l, j|+ 1√

2m
〈0|

 ·
(∑

l>i

1√
2m
|i, l〉 −

∑
l<i

1√
2m
|l, i〉+ 1√

2m
|0〉
)

= 0

The resulting quantum state is

2m∑
i=1

x̂i√
2m
|i〉 U2−−→

2m∑
i=1

x̂i

2m |0〉+
∑
i<j

x̂i − x̂j

2m |i, j〉.

If we measure the state and get |0〉, then EXACT2m
m (x) = 0. If on the other hand we get

|i, j〉, then xi 6= xj and EXACT2m
m (x) = EXACT2m−2

m−1 (x \ {xi, xj}), therefore we can use
our algorithm for EXACT2m−2

m−1 .
J

TQC’13

266 Exact Quantum Query Complexity of EXACT and THRESHOLD

Note that we can delay the measurements by using |i, j〉 as a starting state for the
recursive call of the algorithm.

For the sake of completeness, we include the following corollary already given in [13]:

I Corollary 3. [13]

QE(EXACTn
k) ≤ max {k, n− k}

Proof. Assume that k < n
2 . The other case is symmetric. Then we append the input x with

n− 2k ones producing x′ and call EXACT2n−2k
n−k (x′). Then concluding that there are n− k

ones in x′ is equivalent to there being (n−k)− (n−2k) = k ones in the original input x. J

The lower bound can be established by the following fact:

I Proposition 4. If g is a partial function such that g(x) = f(x) whenever g is defined on
x, then QE(g) ≤ QE(f).

I Proposition 5.

QE(EXACTn
k) ≥ max {k, n− k}

Proof. Assume that k ≤ n
2 . The other case is symmetric. Define

g(xk+1, . . . , xn) = EXACTn
k (1, . . . , 1, xk+1, . . . , xn).

Observe that g is in fact negation of the OR function on n−k bits which we know [3] to take
n− k queries to compute. Therefore by virtue of Proposition 4 no algorithm for EXACTn

k

may use less than n− k queries. J

4 Algorithm for THRESHOLD

We will abbreviate THRESHOLD as Th.

I Definition 6. The function Thn
k is a Boolean function of n variables being true iff at least

k of the variables are equal to 1.

The function Th2k+1
k+1 is commonly referred to as MAJ 2k+1 or MAJORITY 2k+1 because

it is equal to the majority of values of input variables.
Remarkably an approach similar to the one used for EXACT works in this case as well.

I Theorem 7.

QE(MAJ 2k+1) ≤ k + 1.

Proof. Again, a recursive solution is constructed as follows. The base case k = 0 is trivial
to perform with one query, because the function returns the value of the single variable.
The recursive step k = m shares the states, unitary transformation U1 and the query with
our algorithm for EXACT , but the unitary U2 is slightly different:

U1 |0〉 →
2m+1∑

i=1

1√
2m+ 1

|i〉.

2m+1∑
i=1

1√
2m+ 1

|i〉 Q−→
2m+1∑

i=1

x̂i√
2m+ 1

|i〉.

A. Ambainis, J. Iraids, and J. Smotrovs 267

U2 |i〉 =
∑
j>i

√
2m− 1
2m |i, j〉 −

∑
j<i

√
2m− 1
2m |j, i〉+

∑
j 6=i

1
2m |j〉.

The resulting state is

2m+1∑
i=1

x̂i√
2m+ 1

|i〉 U2−−→
2m+1∑

i=1

∑
j 6=i

x̂j

2m
√

2m+ 1
|i〉+

∑
i<j

(x̂i − x̂j)
√

2m− 1
2m
√

2m+ 1
|i, j〉.

We perform a complete measurement. There are two kinds of outcomes:

1) If we get state |i〉, then either

a) xi is the value in the majority which according to the polynomial
∑

j 6=i x̂j not being
zero implies that in x \ {xi} the number of ones is greater than the number of zeroes
by at least 2; or

b) xi is a value in the minority.
In both of these cases, for all j : j 6= i it is true that MAJ 2m+1(x) = MAJ 2m−1(x \
{xi, xj}). Therefore, we can solve both cases by removing xi and one other arbitrary
input value and calculating majority from the remaining values.

2) If we get state |i, j〉, then it is even better: we know that xi 6= xj and therefore
MAJ 2m+1(x) = MAJ 2m−1(x \ {xi, xj}).

J

I Corollary 8. If 0 < k < n, then

QE(Thn
k) ≤ max {k, n− k + 1}.

Proof. Assume that k ≤ n
2 . The other case is symmetric. Then we append the input x

with n − 2k + 1 ones producing x′ and call MAJ 2n−2k+1(x′). Then x′ containing at least
n− k+ 1 ones is equivalent to x containing at least (n− k+ 1)− (n− 2k+ 1) = k ones. J

I Proposition 9.

QE(Thn
k) ≥ max {k, n− k + 1}

Proof. Assume that k ≤ n
2 . The other case is symmetric. Define

g(xk, xk+1, . . . , xn) = Thn
k (1, . . . , 1, xk, xk+1, . . . , xn).

Observe that g is in fact the OR function on n−k+1 bits which we know [3] takes n−k+1
queries to compute. Therefore by virtue of Proposition 4 no algorithm for Thn

k may use less
than n− k + 1 queries. J

5 Conclusion

Coming up with exact quantum algorithms that are substantially better than any classical
algorithm has been a difficult open problem. Until a few months ago, no example of total
Boolean function with QE(f) < D(f)/2 was known and the examples of functions with
QE(f) = D(f)/2 were almost all based on one idea: applying 1-query quantum algorithm
for x1 ⊕ x2 as a subroutine.

The first exact quantum algorithm with QE(f) < D(f)/2 (for a total f) was constructed
in [2]. However, no symmetric function with QE(f) < D(f)/2 is known. It has been proven

TQC’13

268 Exact Quantum Query Complexity of EXACT and THRESHOLD

that if f(x) is a symmetric, non-constant function of n variables, then QE(f) ≥ n/2− o(n)
[11, 6].

In this paper, we construct exact quantum algorithms for two symmetric functions:
EXACT and THRESHOLD. Both of those algorithms achieve QE(f) = D(f)/2 (exactly
or in the limit) and use new ideas. At the same time, our algorithms are quite simple and
easy to understand.

The main open problem is to come with more algorithmic techniques for constructing
exact quantum algorithms. Computer experiments via semidefinite optimization [13] show
that there are many functions for which exact quantum algorithms are better than deter-
ministic algorithms. Yet, in many of these cases, the only way to construct these algorithms
is by searching the space of all quantum algorithms, using semidefinite optimization as the
search tool.

For example, from the calculations in [13] (based on semidefinite optimization) it is
apparent that there are 3 symmetric functions of 6 variables for which QE(f) = 3: PARITY ,
EXACT6

3 and EXACT6
2,4 (exactly 2 or 4 of 6 variables are equal to 1).

Unlike for the first two functions, we are not aware of any simple quantum algorithm
or lower bounds for EXACT6

2,4. Based on the evidence from semidefinite optimization, we
conjecture that if n is even and 2k < n then the quantum query complexity of EXACTn

k,n−k

is n− k− 1. In particular, this would mean that the complexity of EXACTn
n/2−1,n/2+1 is n

2
and this function also achieves a gap of QE(f) = D(f)/2.

At the moment, we know that this conjecture is true for k = 0 and k = 1. Actually,
both of those cases can be solved by a classical algorithm which uses the 1-query algorithm
for x1 ⊕ x2 as a quantum subroutine. This approach fails for k ≥ 1 and it seems that the
approach in the current paper is also not sufficient — without a substantial new component.

References

1 A. Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on Com-
puting, 37(1): 210-239, 2007. Also FOCS’04 and quant-ph/0311001.

2 A. Ambainis: Superlinear advantage for exact quantum algorithms. In Proceedings of 45th
ACM STOC, pages 891–900, 2013. Also arXiv:1211.0721.

3 R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by
polynomials. Journal of the ACM, 48(4):778–797, 2001. Earlier version in FOCS’98. Also
arXiv:9802049.

4 A. Belovs. Span programs for functions with constant-sized 1-certificates. In Proceedings
of 44th ACM STOC, pages 77–84, 2012. Also arXiv:1105.4024.

5 G. Brassard and P. Høyer. An exact quantum polynomial-time algorithm for Simon’s prob-
lem. Proceedings of the Israeli Symposium on Theory of Computing and Systems (ISTCS),
pages 12–23, 1997. Also arXiv:9704027.

6 H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a survey.
Theoretical Computer Science, 288(1):21–43, 2002.

7 R. Cleve, A. Eckert, C. Macchiavello, and M. Mosca. Quantum algorithms revisited.
Proceedings of the Royal Society of London, volume A454, pages 339–354, 1998. Also
arXiv:9708016.

8 D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. In Pro-
ceedings of the Royal Society of London, volume A439, pages 553–558, 1992.

9 E. Farhi, J. Goldstone, S. Gutman, A Quantum Algorithm for the Hamiltonian NAND
Tree. Theory of Computing, 4:169-190, 2008. Also quant-ph/0702144.

A. Ambainis, J. Iraids, and J. Smotrovs 269

10 E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. A limit on the speed of quantum
computation in determining parity. Physical Review Letters, 81(5):5442–5444, 1998. Also
arXiv:9802045.

11 J. von zur Gathen and J. R. Roche. Polynomials with two values. Combinatorica, 17(3):345–
362, 1997.

12 L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
28th ACM STOC, pages 212–219, 1996. Also arXiv:9605043.

13 A. Montanaro, R. Jozsa, G. Mitchison. On exact quantum query complexity. arXiv preprint
arXiv:1111.0475 (2011)

14 M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, 2000.

15 N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. Com-
putational Complexity, 4(4):301–313, 1994. Earlier version in STOC’92.

16 B. Reichardt, R. Špalek. Span-program-based quantum algorithm for evaluating formulas.
Proceedings of STOC’08, pp. 103-112. Also arXiv:0710.2630.

17 P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997. Earlier version
in FOCS’94. Also arXiv:9508027.

18 D. Simon. On the power of quantum computation. SIAM Journal on Computing,
26(5):1474–1483, 1997. Earlier version in FOCS’94.

TQC’13

	Introduction
	1. Introduction
	Technical Preliminaries
	2. Technical Preliminaries
	Algorithm for EXACT
	3. Algorithm for EXACT
	Algorithm for THRESHOLD
	4. Algorithm for THRESHOLD
	Conclusion
	5. Conclusion
	References

