25 research outputs found

    Thoracic wall reconstruction using both portions of the latissimus dorsi previously divided in the course of posterolateral thoracotomy

    Get PDF
    Objective: Besides other factors, the choice of reconstructive method for full thickness thoracic wall defects depends on the morbidity of preceding surgical procedures. The pedicled latissimus dorsi flap is a reliable and safe option for reconstruction of the thorax. A posterolateral thoracotomy, however, results in division of the muscle. Both parts of the muscle can be employed to close full thickness defects of the chest wall. The proximal part can be pedicled on the thoracodorsal vessels or the serratus branch; the distal part can be pedicled on paravertebral or intercostal perforators. This retrospective study was undertaken to evaluate the reconstructive potential of both parts of the latissimus dorsi in thoracic wall reconstruction after posterolateral thoracotomy. Methods: Between 1987 and 1999, 36 consecutive patients underwent reconstruction of full-thickness thoracic wall defects with latissimus dorsi-flaps after posterolateral thoracotomies. The defects resulted from infection and open window thoracostomy (n=31), trauma (n=3) and resection of tumours (n=2). The patients' average age was 57 years (range 22-76 years). Twenty-five patients were male, 11 were female. In 31 cases the split latissimus dorsi alone was employed; in five cases additional flaps had to be used due to the size of the defects, additional intrathoracic problems or neighbouring defects. Results: In 34 cases defect closure could be achieved without major complications. Empyema recurred in the pleural cavity in one case and one patient died of septicaemia. The 15 patients who had required a respirator in the preoperative phase could be extubated 4.8 days (average) after thoracic wall reconstruction. Postoperative hospital stay averaged 16 days. Conclusions: Different methods are available for reconstruction of full thickness defects of the thoracic wall. After posterolateral thoracotomy in the surgical treatment of empyema, oncologic surgery and traumatology, the latissimus dorsi muscle still retains some reconstructive potential. Advantages are low additional donor site morbidity and anatomical reliability. As it is located near the site of the defect, there is no need for additional surgical sites or intraoperative repositioning. In our service, the split latissimus dorsi muscle flap has proven to be a valuable and reliable option in thoracic wall reconstructio

    Hypoxia increases membrane metallo-endopeptidase expression in a novel lung cancer ex vivo model - role of tumor stroma cells

    Get PDF
    Background: Hypoxia-induced genes are potential targets in cancer therapy. Responses to hypoxia have been extensively studied in vitro, however, they may differ in vivo due to the specific tumor microenvironment. In this study gene expression profiles were obtained from fresh human lung cancer tissue fragments cultured ex vivo under different oxygen concentrations in order to study responses to hypoxia in a model that mimics human lung cancer in vivo.Methods: Non-small cell lung cancer (NSCLC) fragments from altogether 70 patients were maintained ex vivo in normoxia or hypoxia in short-term culture. Viability, apoptosis rates and tissue hypoxia were assessed. Gene expression profiles were studied using Affymetrix GeneChip 1.0 ST microarrays.Results: Apoptosis rates were comparable in normoxia and hypoxia despite different oxygenation levels, suggesting adaptation of tumor cells to hypoxia. Gene expression profiles in hypoxic compared to normoxic fragments largely overlapped with published hypoxia-signatures. While most of these genes were up-regulated by hypoxia also in NSCLC cell lines, membrane metallo-endopeptidase (MME, neprilysin, CD10) expression was not increased in hypoxia in NSCLC cell lines, but in carcinoma-associated fibroblasts isolated from non-small cell lung cancers. High MME expression was significantly associated with poor overall survival in 342 NSCLC patients in a meta-analysis of published microarray datasets.Conclusions: The novel ex vivo model allowed for the first time to analyze hypoxia-regulated gene expression in preserved human lung cancer tissue. Gene expression profiles in human hypoxic lung cancer tissue overlapped with hypoxia-signatures from cancer cell lines, however, the elastase MME was identified as a novel hypoxia-induced gene in lung cancer. Due to the lack of hypoxia effects on MME expression in NSCLC cell lines in contrast to carcinoma-associated fibroblasts, a direct up-regulation of stroma fibroblast MME expression under hypoxia might contribute to enhanced aggressiveness of hypoxic cancers

    Thoraxfenster

    No full text

    Joy for morphology: dermatopathology and art

    Full text link
    This work displays the bridging of two fields - namely dermatopathology and art. What is astonishing is that structures one sees through the microscope reveal aesthetic and artistic aspects and sometimes resemble in a startling way the designs of certain artists. Specific examples are illustrated to enhance the joy and appreciation of morphologic images
    corecore