13 research outputs found

    Feasibility for damage identification in offshore wind jacket structures through monitoring of global structural dynamics

    Get PDF
    The modal response of a four-legged jacket structure to damages are explored and resulting considerations for damage detection are discussed. A finite element model of the Wikinger (Iberdrola) jacket structure is used to investigate damage detection. Damages, such as cracks, scour, corrosion and more, are modelled in a simulation environment. The resulting modal parameters are calculated, these parameters are compared to those from an unaltered structure and metrics are calculated including frequency change, modal assurance criterion and modal flexibility. A highly detailed design-model is used to conduct a sensitivity study on modal parameters for a range of changes. By conducting this on the same structure, this acts as a useful reference for those interested in the dynamic response of offshore wind jacket structures. Additionally, this paper addresses the issue of changes in mode parameters resulting from turbine yaw. This paper also considers the challenge of mode-swapping in semi-symmetric structures and proposes several approaches for addressing this. Damage typically results in a reduction of frequency and change in mode shapes, but in ways which can be distinguished from other structural changes, given the extent of this model. These findings are important considerations for modal-based damage detection of offshore wind support structures

    Detecting critical scour developments at monopile foundations under operating conditions

    Get PDF
    Early warning systems for critical conditions at offshore wind turbines are needed to reduce maintenance costs and avoid catastrophic failures. Monitoring of the critical scour development at monopile foundations is commonly done with cost-intensive scour depth measurements. The scour condition is regarded critical when the depth exceeds the maximum allowed design scour depth during normal operation or due to a severe storm. This practice can lead to high maintenance costs and potentially unnecessary maintenance activities such as refilling of the scour hole or reconstruction of the scour protection. Instead, the exploitation of the structural reserves of fatigue driven monopile foundation designs stemming from design assumption versus real site conditions is suggested. Damage accumulation is highly influenced by the time behaviour of the transient scouring and real soil properties. This paper elaborates on novel low cost monitoring methods to detect when a scour development is truly critical when taking site conditions into account. A combination of fatigue monitoring and natural frequency supervision is proposed for critical scour identification in the framework of an early warning system

    Key Performance Indicators for Wind Farm Operation and Maintenance

    Get PDF
    Key performance indicators (KPI) are tools for measuring the progress of a business towards its goals. Although wind energy is now a mature technology, there is a lack of well-defined best practices to asses the performance of a wind farm (WF) during the operation and maintenance (O&M) phase; processes and tools of asset management, such as KPIs, are not yet well-established. This paper presents a review of the major existing indicators used in the O&M of wind farms (WFs), as such information is not available in the literature so far. The different stakeholders involved in the O&M phase are identified and analysed together with their interests, grouped into five categories. A suggestion is made for the properties that KPIs should exhibit. For each category, major indicators that are currently in use are reviewed, discussed and verified against the properties defined. Finally, we propose a list of suitable KPIs that will allow stakeholders to have a better knowledge of an operating asset and make informed decisions. It is concluded that more detailed studies of specific KPIs and the issues of their implementation are probably needed

    A systematic failure mode effects and criticality analysis for offshore wind turbine systems towards integrated condition based maintenance strategies

    Get PDF
    Condition-based maintenance is applied in various industries to monitor and control critical assets and to optimize maintenance efforts. Its applicability to the offshore wind energy industry has been considered for almost 20 years and has resulted in the development and implementation of solutions that have contributed to lower cost of maintenance and increased asset availability. However, there is currently no public domain guidance available that provides the information required to (i) prioritize systems for which condition monitoring would generate highest value and to (ii) understand the parameters that need to be monitored by a specific system from failure cause to failure mode. Both items are addressed in this paper, providing a clearly structured, risk-based assessment methodology and corresponding results for state-of-the-art offshore wind turbines. A total of 337 failure modes have been identified and analysed by experts representing approximately 70% of the European offshore wind market to assess potential benefits of condition monitoring systems. Results may be used to target the development of condition monitoring systems focusing on critical systems and to find optimal O&M strategies by understanding failure paths of main offshore wind turbine systems resulting in a lower cost of energy and a more optimal risk-return balance

    Roll-to-Roll pilot line for large-scale manufacturing of microfluidic devices

    Get PDF
    Roll-to-roll (R2R) technologies with roller-based nanoimprinting methods enable manufacturing of highly cost-effective and large-scale sheets of flexible polymer film with precise structures on a micro- and nanoscale 1. Areas that can benefit strongly from such large scale technologies are microfluidics, biosensors, and lab-on-chip products for point of care diagnostics, drug discovery and food control. Here, R2R fabrication could greatly reduce production costs and increase manufacturing capacity with respect to currently used products. A pilot line with this technology is investigated in the European Horizon 2020 project R2R Biofluidics and its capabilities are tested on two Demonstrators: - Demonstrator 1: In-vitro diagnostic chip with imprinted microfluidic channels based on optical chemiluminescence measurement by photodetectors. - Demonstrator 2: Neuronal cell culture plate with imprinted cavities and channels for controlled culturing and fluorescence imaging of neurons, for high throughput drug screening. Please click Additional Files below to see the full abstract

    High-throughput roll-to-roll production of polymer biochips for multiplexed DNA detection in point-of-care diagnostics

    Get PDF
    Roll-to-roll UV nanoimprint lithography has superior advantages for high-throughput manufacturing of micro- or nano-structures on flexible polymer foils with various geometries and configurations. Our pilot line provides large-scale structure imprinting for cost-effective polymer biochips (4500 biochips/hour), enabling rapid and multiplexed detections. A complete high-volume process chain of the technology for producing structures like μ-sized, triangular optical out-couplers or capillary channels (width: from 1 μm to 2 mm, height: from 200 nm up to 100 μm) to obtain biochips (width: 25 mm, length: 75 mm, height: 100 μm to 1.5 mm) was described. The imprinting process was performed with custom-developed resins on polymer foils with resin thicknesses ranging between 125–190 μm. The produced chips were tested in a commercial point-of-care diagnostic system for multiplexed DNA analysis of methicillin resistant Staphylococcus aureus (e.g., mecA, mecC gene detections). Specific target DNA capturing was based on hybridisation between surface bound DNA probes and biotinylated targets from the sample. The immobilised biotinylated targets subsequently bind streptavidin–horseradish peroxidase conjugates, which in turn generate light upon incubation with a chemiluminescent substrate. To enhance the light out-coupling thus to improve the system performance, optical structures were integrated into the design. The limits-of-detection of mecA (25 bp) for chips with and without structures were calculated as 0.06 and 0.07 μM, respectively. Further, foil-based chips with fluidic channels were DNA functionalised in our roll-to-roll micro-array spotter following the imprinting. This straightforward approach of sequential imprinting and multiplexed DNA functionalisation on a single foil was also realised for the first time. The corresponding foil-based chips were able to detect mecA gene DNA sequences down to a 0.25 μM concentration.This research was supported by R2R BIOFLUIDICS project (http://www.r2r-biofluidics.eu/) under Horizon 2020 European Union (EU) Research and Innovation Programme with grant agreement no 646260. The research was also partially supported by NextGenMicrofluidics project (https:// www. nextgenmicrofluidics.eu/) under HORIZON2020 with grant agreement no 862092. The authors cordially thank Gerburg Schider & Gerhard Mohr, Markus Postl, Paul Patter and Alexander Wheeldon (JOANNEUM RESEARCH – Materials, Weiz, Austria) for revising the manuscript, preparing all the chip and R2R pilot line illustrations, taking the photographs and providing technical support, respectively. The authors are also grateful to Christian Wolf and Johannes Götz (JOANNEUM RESEARCH – Materials, Weiz, Austria) for their supports in the fluidic design and R2R UV-NIL structuring, respectively. We further kindly thank Alba Simon Munoz and Robert Fay (SCIENION AG, Berlin, Germany) for providing the illustration of the R2R micro-spotting line. PT specially thanks Ege Ozgun (NANOTAM, Bilkent University, Ankara, Turkey) for critically reading the manuscript

    Lifetime extension of onshore wind turbines : a review covering Germany, Spain, Denmark, and the UK

    Get PDF
    A significant number of wind turbines will reach the end of their planned service life in the near future. A decision on lifetime extension is complex and experiences to date are limited. This review presents the current state-of-the-art for lifetime extension of onshore wind turbines in Germany, Spain, Denmark, and the UK. Information was gathered through a literature review and 24 guidelinebased interviews with key market players. Technical, economic and legal aspects are discussed. Results indicate that end-of-life solutions will develop a significant market over the next five years. The application of updated load simulation and inspections for technical lifetime extension assessment differs between countries. A major concern is the uncertainty about future electricity spot market prices, which determine if lifetime extension is economically feasible

    Brief communication: Structural health monitoring for lifetime extension of offshore wind monopiles: can strain measurements at one level tell us everything?

    No full text
    Operators need accurate knowledge on structural reserves to decide about lifetime extension of offshore wind turbines. Load monitoring enables us to directly compare design loads with real loading histories of the support structure in order to calculate its remaining useful lifetime. Monitoring of every hot spot is technically and financially not feasible. This paper presents a novel idea for load monitoring of monopiles. It requires strain measurements at only one level convenient for sensor installation, such as tower bottom. Measurements are converted into damage equivalent loads for 10 min time intervals. Damage equivalent loads are extrapolated to other locations of the structure with a simulation model and statistical algorithm. For this, structural loads at all locations of the monopile are calculated with aero-hydro-elastic software and updated finite element models. Damage equivalent loads at unmeasured locations are predicted from the simulation results with a k-nearest neighbor regression algorithm. The extrapolation was tested with numerical simulations of an 8 MW offshore wind turbine. Results show that damage can be predicted with an error of 1–3 % if this is done conditional on mean wind speed, which is very promising. The load monitoring concept is simple, cheap and easy to implement. This makes it ideal for making decisions on lifetime extension of monopiles

    Data-driven Model Updating of an Offshore Wind Jacket Substructure

    No full text
    The present paper provides a model updating application study concerning the jacket substructure of an offshore wind turbine. The updating is resolved in a sensitivity-based parameter estimation setting, where a cost function expressing the discrepancy between experimentally obtained modal parameters and model-predicted ones is minimized. The modal parameters of the physical system are estimated through stochastic subspace identification (SSI) applied to vibration data captured for idling and operational states of the turbine. From a theoretical outset, the identification approach relies on the system being linear and time-invariant (LTI) and the input white noise random processes; criteria which are violated in this application due to sources such as operational variability, the turbine controller, and non-linear damping. Consequently, particular attention is given to assess the feasibility of extracting modal parameters through SSI under the prevailing conditions and subsequently using these parameters for model updating. On this basis, it is deemed necessary to disregard the operational turbine states---which severely promote non-linear and time-variant structural behaviour and, as such, imprecise parameter estimation results---and conduct the model updating based on modal parameters extracted solely from the idling state. The uncertainties associated with the modal parameter estimates and the model parameters to be updated are outlined and included in the updating procedure using weighting matrices in the sensitivity-based formulation. By conducting the model updating based on in-situ data harvested from the jacket substructure during idling conditions, the maximum eigenfrequency deviation between the experimental estimates and the model-predicted ones is reduced from 30 % to 1 %
    corecore