42 research outputs found

    Expression of adiponectin receptors 1 and 2 in the ovary and concentration of plasma adiponectin during the oestrous cycle of the pig

    No full text
    The aim of this study was to compare the expression levels of adiponectin receptor 1 and adiponectin receptor 2 mRNAs and proteins in porcine ovaries during four stages (days 2 to 3, 10 to 12, 14 to 16, 17 to 19) of the oestrous cycle and to measure adiponectin plasma concentrations during the same phases of the cycle. Higher mRNA expression of adiponectin receptor 1 was detected in porcine granulosa cells than in corpora lutea and theca cells (P < 0.01). In contrast, higher gene expression of adiponectin receptor 2 occurred in newly developed and mature corpora lutea (P < 0.01). The adiponectin receptor 1 protein content was the highest in corpora lutea isolated on days 2 to 3 of the cycle and was the lowest in theca interna cells (P < 0.01). The profile of adiponectin receptor 2 protein was similar to that of adiponectin receptor 1. Adiponectin plasma concentrations were significantly higher throughout the luteal phase than in the follicular phase (P < 0.01). In conclusion, the presence of adiponectin receptor 1 and adiponectin receptor 2 mRNAs and proteins in the porcine ovary suggests that adiponectin may directly affect ovarian functions through its own specific receptors. The expression of both receptors and adiponectin plasma concentration were dependent on hormonal status related to the stage of the cycle

    The SARS-CoV-2 viral load in COVID-19 patients is lower on face mask filters than on nasopharyngeal swabs

    No full text
    Face masks and personal respirators are used to curb the transmission of SARS-CoV-2 in respiratory droplets; filters embedded in some personal protective equipment could be used as a non-invasive sample source for applications, including at-home testing, but information is needed about whether filters are suited to capture viral particles for SARS-CoV-2 detection. In this study, we generated inactivated virus-laden aerosols of 0.3-2 microns in diameter (0.9 mu m mean diameter by mass) and dispersed the aerosolized viral particles onto electrostatic face mask filters. The limit of detection for inactivated coronaviruses SARS-CoV-2 and HCoV-NL63 extracted from filters was between 10 to 100 copies/filter for both viruses. Testing for SARS-CoV-2, using face mask filters and nasopharyngeal swabs collected from hospitalized COVID-19-patients, showed that filter samples offered reduced sensitivity (8.5% compared to nasopharyngeal swabs). The low concordance of SARS-CoV-2 detection between filters and nasopharyngeal swabs indicated that number of viral particles collected on the face mask filter was below the limit of detection for all patients but those with the highest viral loads. This indicated face masks are unsuitable to replace diagnostic nasopharyngeal swabs in COVID-19 diagnosis. The ability to detect nucleic acids on face mask filters may, however, find other uses worth future investigation

    COVID-19 vaccination in patients receiving allergen immunotherapy (AIT) or biologicals—EAACI recommendations

    No full text
    Immune modulation is a key therapeutic approach for allergic diseases, asthma and autoimmunity. It can be achieved in an antigen-specific manner via allergen immunotherapy (AIT) or in an endotype-driven approach using biologicals that target the major pathways of the type 2 (T2) immune response: immunoglobulin (Ig)E, interleukin (IL)-5 and IL-4/IL-13 or non-type 2 response: anti-cytokine antibodies and B-cell depletion via anti-CD20. Coronavirus disease 2019 (COVID-19) vaccination provides an excellent opportunity to tackle the global pandemics and is currently being applied in an accelerated rhythm worldwide. The vaccine exerts its effects through immune modulation, induces and amplifies the response against the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Thus, as there may be a discernible interference between these treatment modalities, recommendations on how they should be applied in sequence are expected. The European Academy of Allergy and Clinical Immunology (EAACI) assembled an expert panel under its Research and Outreach Committee (ROC). This expert panel evaluated the evidence and have formulated recommendations on the administration of COVID-19 vaccine in patients with allergic diseases and asthma receiving AIT or biologicals. The panel also formulated recommendations for COVID-19 vaccine in association with biologicals targeting the type 1 or type 3 immune response. In formulating recommendations, the panel evaluated the mechanisms of COVID-19 infection, of COVID-19 vaccine, of AIT and of biologicals and considered the data published for other anti-infectious vaccines administered concurrently with AIT or biologicals

    COVID-19 vaccination in patients receiving allergen immunotherapy (AIT) or biologicals—EAACI recommendations

    No full text
    Immune modulation is a key therapeutic approach for allergic diseases, asthma and autoimmunity. It can be achieved in an antigen-specific manner via allergen immunotherapy (AIT) or in an endotype-driven approach using biologicals that target the major pathways of the type 2 (T2) immune response: immunoglobulin (Ig)E, interleukin (IL)-5 and IL-4/IL-13 or non-type 2 response: anti-cytokine antibodies and B-cell depletion via anti-CD20. Coronavirus disease 2019 (COVID-19) vaccination provides an excellent opportunity to tackle the global pandemics and is currently being applied in an accelerated rhythm worldwide. The vaccine exerts its effects through immune modulation, induces and amplifies the response against the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Thus, as there may be a discernible interference between these treatment modalities, recommendations on how they should be applied in sequence are expected. The European Academy of Allergy and Clinical Immunology (EAACI) assembled an expert panel under its Research and Outreach Committee (ROC). This expert panel evaluated the evidence and have formulated recommendations on the administration of COVID-19 vaccine in patients with allergic diseases and asthma receiving AIT or biologicals. The panel also formulated recommendations for COVID-19 vaccine in association with biologicals targeting the type 1 or type 3 immune response. In formulating recommendations, the panel evaluated the mechanisms of COVID-19 infection, of COVID-19 vaccine, of AIT and of biologicals and considered the data published for other anti-infectious vaccines administered concurrently with AIT or biologicals. © 2022 European Academy of Allergy and Clinical Immunology and John Wiley &amp; Sons Ltd
    corecore