406 research outputs found
Association between 5-HTTLPR and Borderline Personality Disorder Traits among Youth
This study provides the first genetic association examination of borderline personality disorder (BPD) traits in children and adolescents (ages 9–15) using two independent samples of youth recruited from the general community. We tested the a priori hypothesis that the serotonin transporter promoter gene (5-HTTLPR) would relate specifically to BPD traits in youth. This association was hypothesized based on prior genetic association research with BPD adults and theory positing that emotion dysregulation may be a core risk process contributing to BPD. Youth provided DNA via buccal cells. Both youth and a parent completed self-report measures assessing youth's BPD traits and depressive symptoms. Results from both Study 1 (N = 242) and an independent replication sample of Study 2 (N = 144) showed that carriers of the short allele of 5-HTTLPR exhibited the highest levels of BPD traits. This relation was observed even after controlling for the substantial co-occurrence between BPD traits and depressive symptoms. This specific association between 5-HTTLPR and BPD traits among youth supports previous genetic associations with adults diagnosed with BPD and provides preliminary support for a developmental extension of etiological risk for BPD among youth
Amplified biochemical oscillations in cellular systems
We describe a mechanism for pronounced biochemical oscillations, relevant to
microscopic systems, such as the intracellular environment. This mechanism
operates for reaction schemes which, when modeled using deterministic rate
equations, fail to exhibit oscillations for any values of rate constants. The
mechanism relies on amplification of the underlying stochasticity of reaction
kinetics within a narrow window of frequencies. This amplification allows
fluctuations to beat the central limit theorem, having a dominant effect even
though the number of molecules in the system is relatively large. The mechanism
is quantitatively studied within simple models of self-regulatory gene
expression, and glycolytic oscillations.Comment: 35 pages, 6 figure
Molecular Constraints on Synaptic Tagging and Maintenance of Long-Term Potentiation: A Predictive Model
Protein synthesis-dependent, late long-term potentiation (LTP) and depression
(LTD) at glutamatergic hippocampal synapses are well characterized examples of
long-term synaptic plasticity. Persistent increased activity of the enzyme
protein kinase M (PKM) is thought essential for maintaining LTP. Additional
spatial and temporal features that govern LTP and LTD induction are embodied in
the synaptic tagging and capture (STC) and cross capture hypotheses. Only
synapses that have been "tagged" by an stimulus sufficient for LTP and learning
can "capture" PKM. A model was developed to simulate the dynamics of key
molecules required for LTP and LTD. The model concisely represents
relationships between tagging, capture, LTD, and LTP maintenance. The model
successfully simulated LTP maintained by persistent synaptic PKM, STC, LTD, and
cross capture, and makes testable predictions concerning the dynamics of PKM.
The maintenance of LTP, and consequently of at least some forms of long-term
memory, is predicted to require continual positive feedback in which PKM
enhances its own synthesis only at potentiated synapses. This feedback
underlies bistability in the activity of PKM. Second, cross capture requires
the induction of LTD to induce dendritic PKM synthesis, although this may
require tagging of a nearby synapse for LTP. The model also simulates the
effects of PKM inhibition, and makes additional predictions for the dynamics of
CaM kinases. Experiments testing the above predictions would significantly
advance the understanding of memory maintenance.Comment: v3. Minor text edits to reflect published versio
A self-organized model for cell-differentiation based on variations of molecular decay rates
Systemic properties of living cells are the result of molecular dynamics
governed by so-called genetic regulatory networks (GRN). These networks capture
all possible features of cells and are responsible for the immense levels of
adaptation characteristic to living systems. At any point in time only small
subsets of these networks are active. Any active subset of the GRN leads to the
expression of particular sets of molecules (expression modes). The subsets of
active networks change over time, leading to the observed complex dynamics of
expression patterns. Understanding of this dynamics becomes increasingly
important in systems biology and medicine. While the importance of
transcription rates and catalytic interactions has been widely recognized in
modeling genetic regulatory systems, the understanding of the role of
degradation of biochemical agents (mRNA, protein) in regulatory dynamics
remains limited. Recent experimental data suggests that there exists a
functional relation between mRNA and protein decay rates and expression modes.
In this paper we propose a model for the dynamics of successions of sequences
of active subnetworks of the GRN. The model is able to reproduce key
characteristics of molecular dynamics, including homeostasis, multi-stability,
periodic dynamics, alternating activity, differentiability, and self-organized
critical dynamics. Moreover the model allows to naturally understand the
mechanism behind the relation between decay rates and expression modes. The
model explains recent experimental observations that decay-rates (or turnovers)
vary between differentiated tissue-classes at a general systemic level and
highlights the role of intracellular decay rate control mechanisms in cell
differentiation.Comment: 16 pages, 5 figure
Gene expression model (in)validation by Fourier analysis
The determination of the right model structure describing a gene regulation network and the identification of its parameters are major goals in systems biology. The task is often hampered by the lack of relevant experimental data with sufficiently low noise level, but the subset of genes whose concentration levels exhibit an oscillatory behavior in time can readily be analyzed on the basis of their Fourier spectrum, known to turn complex signals into few relatively noise-free parameters. Such genes therefore offer opportunities of understanding gene regulation quantitatively.Journal ArticleResearch Support, Non-U.S. Gov'tValidation StudiesSCOPUS: ar.jinfo:eu-repo/semantics/publishe
A Symmetric Dual Feedback System Provides a Robust and Entrainable Oscillator
Many organisms have evolved molecular clocks to anticipate daily changes in their environment. The molecular mechanisms by which the circadian clock network produces sustained cycles have extensively been studied and transcriptional-translational feedback loops are common structures to many organisms. Although a simple or single feedback loop is sufficient for sustained oscillations, circadian clocks implement multiple, complicated feedback loops. In general, different types of feedback loops are suggested to affect the robustness and entrainment of circadian rhythms
A prospective, single-centre, randomised study evaluating the clinical, imaging and immunological depth of remission achieved by very early versus delayed Etanercept in patients with Rheumatoid Arthritis (VEDERA)
Background Rheumatoid arthritis (RA) is a chronic inflammatory arthritis, with significant impact on quality of life and functional status. Whilst biologic disease modifying anti-rheumatic drugs (bDMARD) such as tumour necrosis factor-inhibitor (TNFi) agents have revolutionised outcomes in RA, early diagnosis with immediate conventional therapy, titrated in a treat to target approach is also associated with high remission rates. The main aim of the VEDERA study (Very Early versus Delayed Etanercept in Rheumatoid Arthritis) is to assess the depth of remission, sustainability of remission and immunological normalisation induced by very early TNFi with etanercept (ETN) or standard of care +/- delayed ETN. Methods/Design VEDERA is a pragmatic, phase IV single-centre open-label randomised superiority trial of 120 patients with early, treatment-naive RA. Patients will be randomised 1:1 to first-line ETN and methotrexate (MTX) or MTX with additional synthetic disease modifying anti-rheumatic drugs (sDMARDs) according to a treat to target (TT) protocol with further step up to ETN and MTX after 24 weeks if remission is not achieved. Participants will have regular disease activity assessments and imaging evaluation including musculoskeletal ultrasound and MRI. The main objective of this study is to assess the proportion of patients with early RA that achieve clinical remission at 48 weeks, following either treatment strategy. In addition, the participants are invited to take part in a cardio-vascular sub-study (Coronary Artery Disease in RA, CADERA), which aims to identify the incidence of cardiovascular abnormalities in early RA. Discussion The hypothesis underlining this study is that very early treatment with first-line ETN increases the proportion of patients with rheumatoid arthritis achieving clinical remission, in comparison to conventional therapy. Trial registration NCT02433184, 23/04/201
Future therapeutic targets in rheumatoid arthritis?
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches
- …