54 research outputs found

    Predicting Worst-Case Execution Time Trends in Long-Lived Real-Time Systems

    Get PDF
    In some long-lived real-time systems, it is not uncommon to see that the execution times of some tasks may exhibit trends. For hard and firm real-time systems, it is important to ensure these trends will not jeopardize the system. In this paper, we first introduce the notion of dynamic worst-case execution time (dWCET), which forms a new perspective that could help a system to predict potential timing failures and optimize resource allocations. We then have a comprehensive review of trend prediction methods. In the evaluation, we make a comparative study of dWCET trend prediction. Four prediction methods, combined with three data selection processes, are applied in an evaluation framework. The result shows the importance of applying data preprocessing and suggests that non-parametric estimators perform better than parametric methods

    Barium Promotes Anchorage-Independent Growth and Invasion of Human HaCaT Keratinocytes via Activation of c-SRC Kinase

    Get PDF
    Explosive increases in skin cancers have been reported in more than 36 million patients with arsenicosis caused by drinking arsenic-polluted well water. This study and previous studies showed high levels of barium as well as arsenic in the well water. However, there have been no reports showing a correlation between barium and cancer. In this study, we examined whether barium (BaCl2) may independently have cancer-related effects on human precancerous keratinocytes (HaCaT). Barium (5–50 µM) biologically promoted anchorage-independent growth and invasion of HaCaT cells in vitro. Barium (5 µM) biochemically enhanced activities of c-SRC, FAK, ERK and MT1-MMP molecules, which regulate anchorage-independent growth and/or invasion. A SRC kinase specific inhibitor, protein phosphatase 2 (PP2), blocked barium-mediated promotion of anchorage-independent growth and invasion with decreased c-SRC kinase activity. Barium (2.5–5 µM) also promoted anchorage-independent growth and invasion of fibroblasts (NIH3T3) and immortalized nontumorigenic melanocytes (melan-a), but not transformed cutaneous squamous cell carcinoma (HSC5 and A431) and malignant melanoma (Mel-ret) cells, with activation of c-SRC kinase. Taken together, our biological and biochemical findings newly suggest that the levels of barium shown in drinking well water independently has the cancer-promoting effects on precancerous keratinocytes, fibroblast and melanocytes in vitro

    RIPK3—a predictive marker for personalized immunotherapy?

    No full text

    Immunopathogenesis of HPV-Associated Cancers and Prospects for Immunotherapy

    Get PDF
    Human papillomavirus (HPV) infection is a causative factor for various cancers of the anogenital region and oropharynx, and is supposed to play an important cofactor role for skin carcinogenesis. Evasion from immunosurveillance favors viral persistence. However, there is evidence that the mere presence of oncogenic HPV is not sufficient for malignant progression and that additional tumor-promoting steps are required. Recent studies have demonstrated that HPV-transformed cells actively promote chronic stromal inflammation and conspire with cells in the local microenvironment to promote carcinogenesis. This review highlights the complex interplay between HPV-infected cells and the local immune microenvironment during oncogenic HPV infection, persistence, and malignant progression, and discusses new prospects for diagnosis and immunotherapy of HPV-associated cancers

    The Human Papillomavirus Type 8 E2 Protein Suppresses β4-Integrin Expression in Primary Human Keratinocytes

    No full text
    Human papillomaviruses (HPVs) infect keratinocytes of skin and mucosa. Homeostasis of these constantly renewing, stratified epithelia is maintained by balanced keratinocyte proliferation and terminal differentiation. Instructions from the extracellular matrix engaging integrins strongly regulate these keratinocyte functions. The papillomavirus life cycle parallels the differentiation program of stratified epithelia, and viral progeny is produced only in terminally differentiating keratinocytes. Whereas papillomavirus oncoproteins can inhibit keratinocyte differentiation, the viral transcription factor E2 seems to counterbalance the impact of oncoproteins. In this study we show that high expression of HPV type 8 (HPV8) E2 in cultured primary keratinocytes leads to strong down-regulation of β4-integrin expression levels, partial reduction of β1-integrin, and detachment of transfected keratinocytes from underlying structures. Unlike HPV18 E2-expressing keratinocytes, HPV8 E2 transfectants did not primarily undergo apoptosis. HPV8 E2 partially suppressed β4-integrin promoter activity by binding to a specific E2 binding site leading to displacement of at least one cellular DNA binding factor. To our knowledge, we show for the first time that specific E2 binding contributes to regulation of a cellular promoter. In vivo, decreased β4-integrin expression is associated with detachment of keratinocytes from the underlying basement membrane and their egress from the basal to suprabasal layers. In papillomavirus disease, β4-integrin down-regulation in keratinocytes with higher E2 expression may push virally infected cells into the transit-amplifying compartment and ensure their commitment to the differentiation process required for virus replication

    Dissecting the roles of endothelin, TGF-beta and GM-CSF on myofibroblast differentiation by keratinocytes

    No full text
    Myofibroblasts are specialized fibroblasts that contribute to wound healing by producing extracellular matrix and by contracting the granulation tissue. They appear in a phase of wound healing when the dermis strongly interacts with activated epidermal keratinocytes. Direct co-culture with keratinocytes upregulates TGFbeta activity and also induces fibroblast to differentiate into alpha-smooth muscle actin (alphaSMA)-positive myofibroblasts. TGF-beta activity alone cannot completely account for alphaSMA induction in these co-cultures, and here we analyze mechanical force generation, another potent inducer of myofibroblast differentiation in this model. Using deformable silicone substrates, we show that contractile activity of fibroblasts is already induced after 1-2-days of co-culture, when fibroblasts are generally alphaSMA negative. Endothelin-1 (ET-1), the most potent inducer of smooth muscle cell contraction, was up-regulated in co-cultures, while blocking ET-1 with the ET receptor inhibitor PD156252 inhibited contraction in these early co-cultures. In 4-5 days of co-culture, however, fibroblast contractile activity correlated with an increased expression of alphaSMA expression. Stimulation of fibroblast mono-cultures with ET-1 in a low serum medium did not induce alphaSMA expression; however, ET-1 did synergize with TGF-beta. Surprisingly, GM-CSF, another mediatorstimulating myofibroblast differentiation in granulation tissue, inhibited alphaSMA expression in fibroblasts, costimulated with TGF-beta and ET-1. GM-CSF activated NFkappaB, thus interfering with TGF-beta signaling. Blocking TGFbeta and ET-1 largely impaired alphaSMA induction in co-cultures at day 7 and, in combination, almost completely prevented alphaSMA induction. Our results dissect the roles of TGF-beta and ET-1 on mechanical force generation in keratinocyte-fibroblast co-cultures, and identify GM-CSF as an inducer of myofibroblasts acting indirectly
    • …
    corecore