
This is a repository copy of Predicting Worst-Case Execution Time Trends in Long-Lived
Real-Time Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/133478/

Version: Accepted Version

Proceedings Paper:
Dai, Xiaotian orcid.org/0000-0002-6669-5234 and Burns, Alan orcid.org/0000-0001-5621-
8816 (2017) Predicting Worst-Case Execution Time Trends in Long-Lived Real-Time
Systems. In: Bader, Markus and Blieberger, Johann, (eds.) Reliable Software Technologies
- Ada-Europe 2017 - 22nd Ada-Europe International Conference on Reliable Software
Technologies, Proceedings. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) . , pp. 87-101.

https://doi.org/10.1007/978-3-319-60588-3_6

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Predicting Worst-Case Execution Time Trends

in Long-Lived Real-Time Systems

Xiaotian Dai(�) and Alan Burns

Department of Computer Science, University of York, York, UK
{xd656,alan.burns}@york.ac.uk

Abstract. In some long-lived real-time systems, it is not uncommon to
see that the execution times of some tasks may exhibit trends. For hard
and firm real-time systems, it is important to ensure these trends will
not jeopardize the system. In this paper, we first introduce the notion of
dynamic worst-case execution time (dWCET), which forms a new per-
spective that could help a system to predict potential timing failures
and optimize resource allocations. We then have a comprehensive review
of trend prediction methods. In the evaluation, we make a comparative
study of dWCET trend prediction. Four prediction methods, combined
with three data selection processes, are applied in an evaluation frame-
work. The result shows the importance of applying data preprocessing
and suggests that non-parametric estimators perform better than para-
metric methods.

Keywords: Worst-case execution time · Trend prediction · Linear re-
gression · Extreme value theory · Support vector regression

1 Introduction

Worst-case execution times (WCETs) are widely used in verifying the schedula-
bility of a real-time system [18]. For current practice, it is often assumed that the
WCET is a fixed value during the whole system life. However, we want to point
out that for some long-lived systems, the WCET is not constant but may be
gradually increasing with system duration. One reason is that many real-world
applications are highly data-dependent, while the size of input data naturally
grows up with time. Another cause of increased worst-case execution times is
gradually degrading hardware, e.g., decreased maximum operation frequency of
a power-aware system due to degraded thermal performance. The influence of
these effects could be minimal in a short period, but if being examined in a
large time-scale, e.g., days, months or years, the impact on task execution times
would be observable. In this work, we extend the constant WCET perspective
and assume some WCETs are varying with time, which are denoted as dynamic
WCETs (dWCET).

Traditional real-time applications that are deployed in a predictable envi-
ronment should have a small variation of dWCET, assuming the system is de-
signed well against increased amount of data and has regular maintenance of

its hardware. As new systems and architectures are emerging that have larger
uncertainties and more interactions with the environment, these applications
have more significant dWCET variations which we are concerned with in this
work. Some of these systems include autonomous vehicles, space systems, cloud
services, self-adaptive systems, machines that learn from their environment, etc.

Systems are often designed with a limited tolerance of worst-case execution
times. To design a long-lived and reliable system, it is important to observe
the variation of dWCET and predict if the WCET assumption will be violated.
More specifically, if one WCET has a trend that would potentially cause a tim-
ing fault in the future, it should be addressed earlier to make the system achieve
a graceful degradation. Exploring execution time trends could also benefit task
scheduling. A scheduler should not be ‘short-sighted’. If a scheduler can predict
future execution behaviors, it would be possible for it to allocate resources more
optimally, and to reduce the number of unnecessary reallocation/redistribution
actions. It is interesting to see how adaptive control, as well as dynamic schedul-
ing methods, e.g., feedback scheduling [15] [7], could be applied in an integrated
framework.

Overall, the objectives of identifying trends are: 1) To understand the char-
acteristics and influential variables of worst-case execution times; 2) To make
future predictions of execution time based on the identified trend model; 3) To
use the information of dWCET for enhanced feedback scheduling; 4) To make
the system aware of potential timing failures earlier to take corresponding re-
actions, e.g., adjusting scheduler parameters, terminating less critical tasks or
invoking a system reconfiguration.

The focus of this paper is on the first two objectives, which the authors
think are fundamental to understanding dWCET. The content is organized as
follows: a general review of trend identification methods is introduced in Sect. 2.
Notations and symbols used in this article then follow. In Sect. 4, a comparative
experiment that compares four representative trend identification methods is
made. Finally, we analyze our experiment result and make recommendations
and draw conclusions.

2 Potential Approaches

The question of the presence of a trend in a time-series has been extensively
studied in business, economic and environmental studies [16]. For these appli-
cations, the variable of interest is measured or calculated at an approximately
constant rate, and the resultant time sequence data can be analyzed by statisti-
cal methods to test the existence of a trend. Many descriptive and model-based
approaches have been used to detect trends, which range from correlation anal-
ysis, time-series modelling, regression analysis and non-parametric statistical
methods [4].

An important non-parametric statistical test is Kendall’s tau, which is widely
used as a test of trend existence [20]. In the work of Sen in 1968 [11], a slope
estimator based on Kendall’s tau, known as Theil-Sen estimator is designed,

which is a non-parametric estimator that takes the median of all possible slopes
of pairwise observations. This estimator is claimed to be statistically robust
and unbiased [1]. The use of Kendall’s test and Theil-Sen estimator in extreme
precipitation can be found in [6]. Another statistical test for trend detection
is Spearman’s Partial Rank Correlation (SPRC) [8]. It is similar to Kendall’s
tau as it measures the relationship between two variables but differs in the
interpretation of the correlation result. In our work, we use Theil-Sen estimator
as one of the methods for its simplicity and effectiveness.

In Visser and Molenaar’s work [17], a structural time-series model is pro-
posed which has a stochastic/deterministic trend and regression coefficients.
The stochastic trend is described as an Autoregressive Integrated Moving Av-
erage (ARIMA) process, and the overall trend-regression model is estimated by
a Kalman Filter (KF). However, it is a challenge for KF to make a long-term
prediction in the presence of uncertainty.

One method that can address long-term trends is regression analysis, which
is a class of model-based statistical approaches for estimating the relationship
between dependent and independent variables. Linear models with a trend and a
seasonal component are often applied in prediction and forecasting of time series
data, where the parameters are often estimated with an ordinary least square
(OLS) estimator. However, for the OLS estimator, residuals of the time series are
required to follow a normal distribution [11], which is not always valid. Reinsel
and Tiao [10] use linear regression models to estimate trends with a correlated
noise that is modelled by an autoregressive process. In their model, additional
explanatory variables are used in the analysis to improve the prediction precision.
Linear regression is applied by Tiao in the detection of trends in stratospheric
ozone data using time series models with autoregressive noise [16]. We will use
OLS estimator as the second method in our comparison.

Predicting trends are also of great interest in modelling and explaining the
variation in rare and extreme events. Detecting long-term trends in the frequency
of extreme events is studied in [3]. In this study, Frei and Schär modelled the
counts of extreme events based on a binomial distribution and used logistic re-
gression to estimate trends. Several methods of detecting the change of intensity
in the extreme values are reviewed in [13]. A common way to model extreme
events is to use generalized extreme value (GEV) distributions [6] [20], which
was first introduced by Fisher and Tippett in their study in 1928 [2]. The ex-
treme value distribution is generally applied on block maxima, e.g., annual or
monthly maximums in a time series.

One drawback of using block maxima is that only one data point in each
block is used in the analysis. Alternative data preprocessing approaches include
Peak-over-threshold (POT) and r-largest methods, which use relatively more
data points to train a model or fit a distribution. The POT is used in [12] to
study extreme precipitation in Ethiopia. In their study, the location parameter
of the EV distribution is represented by a monthly constant and a yearly trend.
A similar model is also applied in [13], in which the parameters of the extreme
distribution are estimated by the maximum likelihood that is considered sepa-

rately for each month. We will study GEV and explore both block maxima and
r-largest as methods of data selection.

Machine learning is also an active research field for trend detection. Neural
Networks has been widely used for time series modelling and forecasting [19]
[9] [5]. However, few practical guidelines exist for building a time series Neu-
ral Network model, in terms of the number of input nodes and hidden layers,
etc. Support vector regression (SVR) is another data-driven machine learning
method. It belongs to the non-parametric regression class and is firmly grounded
in the background of statistical learning theory. It is extremely flexible because
few assumptions are imposed upon the mean function of the distribution, and
it is capable of revealing non-linear relationships between variables. However,
non-parametric techniques are relatively more computationally intensive. A de-
scription of SVR and its mathematical details are given in [14]. SVR is a rapidly
developing field of research in Machine Learning, and it has potentials as a
method of trend prediction. Hence we will use it as the fourth method.

3 Problem Formulation: Predicting WCET Trend

As noted, trend prediction is a well-studied area in other application domains,
e.g., stock market prediction, sales estimation, etc. However, to the authors’
best knowledge, there are few studies on trend analysis of worst-case execution
times in the context of real-time scheduling. It is hard to say whether the results
obtained from other domains can also be applied to worst-case execution times
due to the unique characteristics that WCET exhibits, which include:

1. It is not directly measurable. Unlike physical and financial indices which
can be measured from sensors or statistics, measuring the maximum execu-
tion time in a short period can only produce a high-water mark. This mark
could be smaller than the actual WCET if the worst-case execution scenario
(including the worst-case execution path, worst-case input data, and the
worst-case cache/memory condition) is not encountered during the window.

2. The factors that contribute to a WCET trend are less realized,
studied and understood. This work claims a new perspective of WCET,
which breaks the conventional assumption that WCET is static. The incre-
ment in the size of input data, more frequently extreme events and degrading
hardware performance could all change the temporal behaviour of a pro-
gram. However, the influence of these factors and what impacts they have
on WCETs remain largely unknown.

3. Complexity of estimating WCET. It is realized by the computing com-
munity that the interactions in a computer system would increase exponen-
tially as the number of entities increases. As real-time systems are generally
becoming more complicated in both software and hardware, the difficulty of
static or measurement-based WCET estimation will increase significantly.

By doing this initial study, we hope to get some insights into dynamic WCET.
Specifically, the purpose of this work is to see if one can apply existing trend pre-

diction techniques in the context of predicting WCET and if there are any tech-
niques that perform better than the others. Two data selection methods (block
maxima and r-largest) are also considered to see if the performance could be
improved compared with using raw data. We also introduce notions of predicted
failure point, reaction time of control and reaction deadline to help improve the
decision-making process of when to take corrective action against a potential
timing failure. The rest of this paper will explain the experiment and the result
obtained.

3.1 The Dataset

In this experiment, we use controlled synthetic data that is injected with different
magnitude of trends. The model we used for generating the baseline data is
abstracted from an application which has four major execution paths according
to its operating states. We assume a deterministic trend, if it exists, is only in
the worst-case execution path. It is notable that the trend may also exist in
less critical paths, but as the execution time of the path increases, that path will
eventually overwhelm and become the worst-case path. It should also be pointed
out that there are different types of a trend: i) Linear deterministic trend (LDT),
ii) Linear stochastic trend (LST), iii) Non-linear deterministic trend (NDT), and
iv) Non-linear stochastic trend (NST). For this work, we focus on type i) LDT,
because other types can be decomposed and approximated by a set of linear
trends.

To generate execution time observations, we applied a Markov model with an
estimated state-transition matrix to simulate the correlation between consecutive
samples. To introduce variations in the data, we added corrupting white noise to
represent the non-determinisms of run-time execution, i.e., cache misses, branch
predictions and waiting for hardware resources. It is notable that the objective
here is not for precise modelling of execution time, but is to explore the patterns
behind execution times that are varying as the system runs. Hence we didn’t
include every factor that would affect WCET in the generation process. Overall,
we have 50 datasets which are divided into five groups for our evaluation.

3.2 Compared Methods

In our comparative study, we include four representative trend prediction meth-
ods that are mentioned in Sect. 2, which can be further categorized into para-
metric and non-parametric statistics:

– Ordinary Linear Regression [OLR] (parametric)
– Kendall’s tau and Theil-Sen Estimator [TSE] (non-parametric)
– Support Vector Regression [SVR] (non-parametric)
– Extreme Value Distribution [EVD] (parametric)

Note the difference between parametric and non-parametric methods is whether
a distribution is explicitly or implicitly assumed in the process of modelling. As

the type of dataset we focused on is less studied in the literature, our experiment
is implemented more in an exploratory way. We conducted a comparative study
between the listed methods, as well as different data preprocessing approaches
for selecting the training data.

The objective of a prediction is to estimate the influence of a trend in the
future, i.e., predicting a potential failure point where the execution time will
eventually exceed a safe upper bound due to the existence of a trend. In order
to evaluate the prediction precision, we define the Hypothetical Failure Point

(HFP) as the theoretically time point after which the system will fail the sys-
tem’s temporal requirements. We also define Estimated Failure Point (EFP) as
the estimated HFP that is predicted by trend prediction algorithms. Due to
page limitations, we can not give details of each individual method. For more
information, please refer to the references provided in Sect. 2.

4 Evaluation

To make comparisons, we implemented the aforementioned trend identification
algorithms in MATLAB c©R2015a. Two categories of dataset were generated,
and each dataset consists of multiple samples that are generated by the models
described earlier. In the following sections, we will first introduce symbols that
we used in this experiment, followed by experiment setup and evaluation metrics.

Note a single experiment, with one algorithm and one dataset, will give rise
to a large number of predictions – as the system moves from start-up to the
failure point (end of the dataset). Some of these predictions may be good, others
not. Hence the set of predictions need to be analyzed together to give an overall
estimate of the quality of the algorithm in that experiment. We assume that the
controlled system can take corrective action if the failure point, H, is identified
within a relative deadline, D. But taking action too early is not useful so there
is a maximum reaction-time R defined.

4.1 Symbols and Notations

A diagram that shows the important terms and notations is given in Fig. 1. The
symbols and notations we used in this experiment are listed below:

– t: the current (discrete) time; we assume t is equally spaced in time and
there are no observations between two successive time points tn−1 and tn.

– Cub: the upper bound of task execution time. During run-time if the worst-
case execution time Cm exceeds this bound, i.e., Cm > Cub, a system failure
will occur.

– k: the actual deterministic trend that is ejected while generating a dataset.
We use k̂(t) to represent the trend magnitude that is estimated at time t.

– H: H is the Hypothetical Failure Point (HFP), which is defined as the ex-
pected time of failure. If k > 0, H can be directly estimated by H =
(Cub − Cm0

)/k, where Cm0
is the initial WCET. For datasets that have

k = 0 (i.e. no trend), we make H = ∞.

H

tn

P(t)

k

t

Cn

D

R

-S +S

k(tn)
^

0

Cub

Fig. 1. Representation of important notations and regions

– R: the reaction time, which is defined as the earliest time that a system
should make actions before a failure happens. If a control action is made
earlier than (H −R), we have a false positive.

– D: D is the deadline before which any control action should have been made.
If any action is made in the interval (H−R,H−D], we say that this estimator
behaves correctly and mark the action as a true positive. Otherwise, we have
a false negative if no action is made.

– P (t): is a prediction of H made at time t; We have P (t) → ∞ if no trend or
a negative trend is found. In practice we make P (t) = t+B, if P (t) ≥ t+B,
where B is a boundary. This boundary indicates that the failure is too far
away to be concerned now.

– S: the satisfactory region deviated from H that is used to evaluate the good-
ness of P (t). If H −S ≤ P (t) ≤ H +S, we say the estimation is satisfactory.

During run-time, the system will continuously estimate a failure point and
will only make a control action if the estimated failure point will be reached
soon. Specifically, an action is taken if P (t) < t + R, or more accurately if the
prediction is run every T time, then an action is made based on the criterion
P (t) < t + R − T . The use of confidence intervals is not involved in this work,
and each action is made independently. To evaluate the effectiveness of each
algorithm, we associate positives and negatives with whether an action is taken
when it should be. We have a logic table shown in Table 1.

Table 1. Definition of positives and negatives

t ∈ [0, H −R) [H −R,H −D) [H −D,H)

Action Made false positive true positive true positive

No Action true negative false negative false negative

Penalty

HH - DH - R t

FP FN

H - αR

Fig. 2. Penalties that are given to false positives/negatives

In reality, we found the numbers of false positives/negatives cannot provide
enough information of the goodness of an algorithm, e.g., a false control action
made close to the reaction region is at least better than the one made far earlier.
Hence we introduce a penalty function (shown in Fig. 2). The penalty of false
positives is decreased when the time is approaching the response region (H−R),
and the penalty of false negatives is increasing from (H − R) to the deadline
(H−D). The coefficient α defines the tolerance of early actions. When t > H−D,
any false negative will score a higher penalty, as the deadline is already missed
in this case.

4.2 Experiment Setup

In general, we have two groups of synthetic time-series data: A) trend-free; B)
with a trend. We use the same initial worst-case execution time in both groups,
and in group B we have five distinct magnitudes of trends that are gradually
increasing from 1% to 4%. For each value of trend we independently generated
10 datasets, so overall we have 50 datasets. Each dataset is generated until the
point where a failure would happen, which is directly calculated from the actual
trend. The size of the trend-free dataset is made the same as data with 1% trend.
A full list of the datasets is shown in Table 2.

Table 2. A table of generated datasets

Group Subgroup Dataset Index Data Size Increasing Trend

A A1 1 - 10 5,000 0%

B

B1 11 - 20 5,000 1%
B2 21 - 30 2,500 2%
B3 31 - 40 1,667 3%
B4 41 - 50 1,250 4%

For each dataset in the table, we take the following evaluation steps:

1. Define a sampling window W , and start to make the first estimation at time
t = W .

2. Apply data selection process for samplings from (t − W) to t. Fit pre-
processed time series data with each trend analysis method to generate trend
models.

3. Use the models to estimate the system failure point P (t). Make a (dummy)
control action if P (t) satisfies P (t)− t ≤ R.

4. Make an evaluation of each estimation, including prediction error, valid/
invalid of the estimation and the property of the action if is made. A cumu-
lative penalty is added if a false positive/negative is presented.

5. Move to t = t+M and repeat from step 2 until all data points are processed,
where M is the step size. M controls the fraction of new data that is not
overlapped in the training set. For example, if M = 0.2W , at each step 20%
new data will be added into the analysis.

To evaluate the quality of an estimation, we can use the knowledge of the actual
failure time H. We define the failure estimation error at time t as: eh(t) =
H − P (t). If |eh(t)| ≤ S, the estimation is satisfactory (valid). Otherwise, we
recognize it as invalid. A smaller prediction error represents a better estimation,
and an ideal predictor would have eh = 0. In practice, we want to have a predictor
that would give a positive error (earlier) rather than a negative error (later), as
in the former case, it gives more time for the system to process and make a
reaction.

In addition to failure estimation error, we also have trend estimation error,
which is calculated as: ek(t) = k−k̂(t). Note that ek and eh are correlated, but ek
is more intuitive in evaluation of the precision of estimated slopes. To study the
absolute performance of each algorithm, we introduce a baseline algorithm: the
Ideal Predictor (IDP), which has the foresight to know the HFP and associated
time regions. For IDP, we have ∀t : ek(t) = 0 and ∀t : eh(t) = 0.

4.3 Results

Following the experiment steps that we defined earlier, we evaluated all combina-
tions of trend identification and preprocessing methods. To have a understanding
of advantages and disadvantages of different methods, we have overall three eval-
uations that focus on different aspects of the results obtained from the previous
experiment.

Impact of Data Preprocessing Data preprocessing is an important procedure
in processing time-series data. In this evaluation, we compared the raw data (-
raw) with two data preprocessing methods: block maxima (-max) and r-largest (-
r) value, which are both schemes used in extreme value analysis. For each method
i, preprocessing method j and dataset κ, we obtained the mean of estimated
trend error ēi,j,κk of all evaluations over that dataset:

ēi,j,κk =
1

Nκ

Nκ∑

n=1

ei,j,κk (W + n ∗M)

=
1

Nκ

Nκ∑

n=1

(k − k̂i,j,κ(W + n ∗M))

(1)

where W is the sampling window, M is the step size and Nκ is the number of
evaluations made over dataset κ. In our case, datasets with different magnitude
of trends have different sizes. Hence Nκ of each subgroup is distinct, which can
be calculated from:

Nκ = floor((size of(κ)−W)/M) + 1. (2)

We group ēi,j,κk by {i, j}, and plot them out as box plots in Fig. 3. We have
overall 12 box blots (4 identification × 3 preprocessing methods), and each box
plot consists of 50 data points that comes from all datasets. From Fig. 3, we
could clearly see that results using raw data have the worst performance, i.e.,
olr-raw, tse-raw, svr-raw and evd-raw. Compared with the other two methods
max and r, methods using raw have a significant larger median and variance of
mean errors. This is reasonable because if raw data is used in the training set,
the extreme values that have trends in them will be overwhelmed by the data
points with no trend. Actually as what we observed during the experiment, k̂ is
approximately 0 for all raw-based methods, i.e., no trend is identified.

If we further compare block-maxima and r-largest, we can see that even con-
sidering outliers, block-maxima still performs much better than r-largest across
all four methods. To measure the improvement, we make pairwise comparisons
for each identification method with block-maxima and r-largest. Specifically, we
compare minimum, median, mean, maximum and standard deviation across all
-max and -r methods. The result is shown in Table 3 (all numbers in the table
are multiplied by 1× 103).

Table 3. Mean error of k̂ for block maxima and r-largest

Minimum Median Mean Maximum σ

olr-max -1.91 4.16 6.31 27.64 7.21

olr-r -2.07 7.68 10.59 32.10 9.31

tse-max -1.12 2.23 3.07 17.45 3.27

tse-r -1.15 9.14 9.91 26.00 7.72

svr-max -5.24 0.15 1.60 25.65 5.71

svr-r -1.00 9.65 12.72 44.36 12.74

evd-max -1.46 1.60 3.40 23.47 4.75

evd-r -0.45 5.34 6.86 30.20 6.77

o
lr
-r
a
w

o
lr
-m

a
x

o
lr
-r

ts
e
-r
a
w

ts
e
-m

a
x

ts
e
-r

sv
r-
ra

w

sv
r-
m

a
x

sv
r-
r

e
vd

-r
a
w

e
vd

-m
a
x

e
vd

-r

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Mean Error

Fig. 3. Distribution of mean trend errors k̂ of considered prediction methods

From the table, we can see the minimal errors are roughly the same, except
svr-max which has slightly larger error. If we look at olr-max and olr-r, we can
see that olr-r has 85% larger median, 69% larger mean and 16% larger maximal
error. For tse-max and tse-r, these values are 310%, 223% and 49%. svr-max

outperformed svr-r with 69.5% improvement in mean and 1.87 × 10−2 less in
maxima. Considering the original trend is in a magnitude of 1×10−2 (from 1% to
4%), this is a significant improvement. Finally for evd-max and evd-r, a similar
conclusion is obtained: evd-max is about 100% better than evd-r in terms of
mean error, and 6.73× 10−3 less in maxima.

As a conclusion, compared with using raw data, data preprocessing can signif-
icantly improve identification performance. It can be seen that, for our particular
dataset and block size, block maxima performs the best.

Impact of Variations in Dataset As part of our evaluation, we studied
the impact that the magnitude of trend would have on the performance of our
methods. In our datasets, we have five subgroups, each of which has a distinct
trend ranging from 0% to 4%. We plot the mean trend errors of each method
as an individual line across all datasets in Fig. 4. The x axis represents the
index of the dataset, and the y axis is the mean trend estimation error for all
predictions in that dataset. From the figure we can see that mean errors tend to
be increased when the magnitude of trend is increased. This can be clearly seen
from the peaks of mean errors in each subgroup. We can also see that in each
subgroup of dataset, there exists a large variation between individual datasets.

Dataset Index

0 5 10 15 20 25 30 35 40 45 50

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

IDP-MAX

OLR-MAX

TSE-MAX

SVR-MAX

EVD-MAX

Fig. 4. Estimated trend error of each dataset. All methods use block maxima for data
preprocessing. Subgroups are separated by dashed lines.

This suggests that the estimation error is highly correlated to the magnitude
and characteristics of the trend.

As a conclusion, estimation error is data sensitive. With the magnitude of
trend increases, the error will be increased proportionally. All of these methods
are sensitive to the actual characteristic of a dataset. From Fig. 4, we can see
different methods have very similar patterns in terms of peaks and troughs.
This indicates that although these methods are sensitive to datasets, but as
the way they vary is similar and the same dataset is used across all methods,
the characteristics of the dataset will not break the fairness of this comparison.
However, a large number of datasets should be used to average the variations
across datasets so the actual performance can be revealed.

Comparison of Identification Methods In this evaluation, we will compare
trend identification methods with only block maxima, as it performed the best
among all data preprocessing methods. To compare the effectiveness of a trend
identification method, one important index is the ability to detect a trend. In
our work, this is measured by two factors: the validation of an estimation, and
the positiveness of a related control action. A diagram that shows the relative
performance is shown in Fig. 5. Each bar plot shows a different metric of all
four methods, plus the Ideal Predictor (IDP), separated by dataset subgroups.
For plots of valid and true positives, data is normalized to [0,1] by IDP, while
for plots of invalid and false positive/negative, data is normalized by the worst
method.

From the valid/invalid plots in the figure, we can see that tse-max and svr-

max are the two best methods. OLR has the largest number of invalids for
dataset groups B1, B2, B3 and B4. EVD only performs slightly better than
OLR. If we further look at the numbers of falses, we could see that SVR tends

0

0.5

1
Valid Estimations

IDP-MAX LR-MAX TSE-MAX SVR-MAX EVD-MAX

0

0.5

1
Invalid Estimations

0

0.5

1
True Positives

0

0.5

1
False Positives

k = 0 k = 1% k = 2% k = 3% k = 4%

0

0.5

1
False Negatives

Fig. 5. Experiment result - normalized false negatives/positives

to give more false positives, while OLR gives more false negatives. All methods
give no false positives and negatives when there is no trend in the data. TSE is
consistent and has the best performance on average.

To further compare these methods, we summarize penalties that come from
the results of all datasets for each method, which is shown in Table 4. From
the table it can be seen that TSE has least mean penalties with all three data
selection methods, comparing with the other three methods. This is identical
to the conclusion we described earlier. For methods using block maxima, OLR
obtained the largest penalty, while for r-largest, it is SVR.

Table 4. Mean penalties over all datasets for each prediction method

OLR TSE SVR EVD

raw 62 62 62 62

maxima 58.28 29.02 42.26 49.68

r-largest 58.2 53.82 77.58 55.76

There are other considerations of a trend prediction method which include its
efficiency, sensitivity to data variation, and support of multiple dependent vari-
ables. In all four methods, TSE is the most computationally efficient method,
and it is least sensitive to the characteristic of a dataset. OLR is median in

computation, but it is sensitive to the composition of the dataset, and it will be
biased if a large percentage of non-relevant data is involved. SVR is computa-
tional intensive has additional parameters that can be tuned: the cost C that
controls the trade-off between errors of the SVM on training data and margin
maximization, and the epsilon ǫ that controls the size of insensitive region. The
ability of supporting non-linear trends is supported by SVR as well. SVR directly
supports non-linear data by using Kernel functions, while other methods have
to be extended to support non-linearity. In this work, we only considered one
inference variable: the system duration. However if more dependent variables
need to be considered, a support for multi-variable regression will be necessary,
which both OLR and SVR can support while the other two cannot.

5 Conclusions

In this work, we have introduced the motivation of identifying long-term trends
in worst-case execution times to achieve timing fault prediction. We have shown
four different trend identification methods and compared their performance.
The results suggest that data preprocessing should be used as the procedure
can significantly improve estimation performance. It also can be seen that the
Theil-Sen estimator, which is a non-parametric method, achieved the best per-
formance in this particular experiment. It is robust against noise and outliers,
and is computational effective. The other non-parametric method, SVR, is also
an outstanding method as it can predict non-linear trends and can be used in
multi-variable regression. Extreme value did not perform well because it needs
a large amount of data to fit the distribution, i.e., a large data block. However,
this will decrease the ability of early detection of failures. Finally for OLR, the
performance is not satisfactory as the assumption of normally distributed resid-
uals is violated. This can be improved by assuming a more accurate distribution
of data, which requires to further examine the characteristics of WCET. The
experiment result suggests a preference for using non-parametric methods with
either block-maxima or r-largest.

For future work, we will consider more dependent variables that influence
a WCET to improve the precision of prediction. The use of ensemble learning
to combine two or three identification methods could also benefit the result of
analysis, and multiple successive predictions should be considered to confidently
make a control decision. We also aim to obtain real-life data from industrial
applications, to examine if a similar result would be obtained. All these issues
will form topics for future work.

References

1. Akritas, M.G., Murphy, S.A., LaValley, M.P.: The Theil-sen estimator with doubly
censored data and applications to astronomy. Journal of the American Statistical
Association 90(429), 170–177 (1995)

2. Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the
largest or smallest member of a sample. In: Mathematical Proceedings of the Cam-
bridge Philosophical Society. vol. 24, pp. 180–190. Cambridge Univerisity Press
(1928)

3. Frei, C., Schär, C.: Detection probability of trends in rare events: Theory and
application to heavy precipitation in the Alpine region. Journal of Climate 14(7),
1568–1584 (2001)

4. Hess, A., Iyer, H., Malm, W.: Linear trend analysis: a comparison of methods.
Atmospheric Environment 35(30), 5211–5222 (2001)

5. Hill, T., O’Connor, M., Remus, W.: Neural Network models for time series fore-
casts. Management Science 42(7), 1082–1092 (1996)

6. Kunkel, K.E., Andsager, K., Easterling, D.R.: Long-term trends in extreme precip-
itation events over the conterminous United States and Canada. Journal of Climate
12(8), 2515–2527 (1999)

7. Lu, C., Stankovic, J.A., Son, S.H., Tao, G.: Feedback control real-time scheduling:
Framework, modeling, and algorithms. Real-Time Systems 23(1-2), 85–126 (2002)

8. McLeod, A.I., Hipel, K.W., Bodo, B.A.: Trend analysis methodology for water
quality time series. Environmetrics 2(2), 169–200 (1991)

9. Qi, M., Zhang, G.P.: Trend time–series modeling and forecasting with Neural Net-
works. IEEE Transactions on Neural Networks 19(5), 808–816 (2008)

10. Reinsel, G.C., Tiao, G.C.: Impact of chlorofluoromethanes on stratospheric ozone:
A statistical analysis of ozone data for trends. Journal of the American Statistical
Association 82(397), 20–30 (1987)

11. Sen, P.K.: Estimates of the regression coefficient based on Kendall’s tau. Journal
of the American Statistical Association 63(324), 1379–1389 (1968)

12. Shang, H., Yan, J., Gebremichael, M., Ayalew, S.M.: Trend analysis of extreme
precipitation in the Northwestern Highlands of Ethiopia with a case study of Debre
Markos. Hydrology and Earth System Sciences 15(6), 1937–1944 (2011)

13. Smith, R.L.: Extreme value analysis of environmental time series: an application
to trend detection in ground-level ozone. Statistical Science pp. 367–377 (1989)

14. Smola, A.J., Schölkopf, B.: A tutorial on Support Vector Regression. Statistics and
Computing 14(3), 199–222 (2004)

15. Stankovic, J.A., Lu, C., Son, S.H., Tao, G.: The case for feedback control real-
time scheduling. In: Proceedings of the 11th Euromicro Conference on Real-Time
Systems. pp. 11–20. IEEE (1999)

16. Tiao, G.: Use of statistical methods in the analysis of environmental data. The
American Statistician 37(4b), 459–470 (1983)

17. Visser, H., Molenaar, J.: Trend estimation and regression analysis in climatological
time series: An application of structural time series models and the Kalman filter.
Journal of Climate 8(5), 969–979 (1995)

18. Wilhelm, R., Engblom, J., Ermedahl, A., et al.: The worst-case execution-time
problemoverview of methods and survey of tools. ACM Transactions on Embedded
Computing Systems (TECS) 7(3), 36 (2008)

19. Zhang, G.P., Qi, M.: Neural Network forecasting for seasonal and trend time series.
European Journal of Operational Research 160(2), 501–514 (2005)

20. Zhang, X., Harvey, K.D., Hogg, W., Yuzyk, T.R.: Trends in Canadian streamflow.
Water Resources Research 37(4), 987–998 (2001)

