12 research outputs found

    Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative phosphorylation

    Get PDF
    Deletion of mitochondrial DNA in eukaryotes is currently attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that this process critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication through Rtg2 and Rtg3. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. This shows that oxidative stress-induced mitochondrial impairment may be under strict regulatory control. If the results extend to human cells, the results may prove to be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease

    recommendations by the Conect4Children expert advice group

    Get PDF
    Funding Information: Competing interests: A.V.R. has received Speaker fees/Consultant for Abbvie, Novartis, UCB, SOBI, Eli Lilly and Roche. N.M. reports grants outside the submitted work in the last five years from the Medical Research Council, National Institute of Health Research, March of Dimes, British Heart Foundation, HCA international, Health Data Research UK, Shire Pharmaceuticals, Chiesi Pharmaceuticals, Prolacta Life Sciences, and Westminster Children’s Research Fund; N.M. is a member of the Nestle Scientific Advisory Board and accepts no personal remuneration for this role. N.M. reports travel and accommodation reimbursements from Chiesi, Nestle and Shire. N.M. is a member of C4C, International Neonatal Collaboration (INC), UK National Research Ethics Advisory Service and MHRA advisory groups and/or working parties. S.W. has received compensation as a member of the scientific advisory board of AM Pharma, Novartis and Khondrion and receives research funding from IMI2 for the Conect4children project. B.A. has worked for GlaxoSmithKline between October 2006 and September 2009 and holds company shares. Between October 2009 and May 2015, she has worked for Novartis. M.S. has recieved research grant and honoraria for meetings and Advisory Boards from Alexion, Sanofi/Genzyme, Takeda, CHIESI, Ultragenix, Orchard, Orphazyme. P.I. is a permanent employee of Bayer AG, Germany. M.V. has received compensation for Advisory boards or Steering committes from Roche, Novartis, Achillion, Apellis, Retrophin/Travere, Alexion pharmaceuticals. C.M. has been a consultant to or has received honoraria from Janssen, Angelini, Servier, Nuvelution, Otsuka, Lundbeck, Pfizer, Neuraxpharm and Esteve outside the submitted work. She declares conflicts of interest unrelated to the present work. M.C. had advisory roles for AstraZeneca, Bayer, Bristol Myers Squibb, Eisai, Lilly, and Roche in the last 2 years (outside the topic of the submitted work, for oncology drugs). M.J. has received research grants from Shire and has been engaged as a speaker or consultant by Shire, Ginsana, PCM Scientific Evolan, and New Nordic, all unrelated to the present work. P.S. has received speaker fees and participated at advisory boards for Biomarin, Zogenyx, GW Pharmaceuticals, and has received research funding by ENECTA BV, GW Pharmaceuticals, Kolfarma srl., Eisai. E.R. has received speaker fees and participated at advisory boards for Eisai and has received research funding by GW Pharmaceuticals, Pfizer, Italian Ministry of Health (MoH) and the Italian Medicine Agency (AIFA). This work was developed within the framework of the DINOGMI Department of Excellence of MIUR 2018-2022 (legge 232 del 2016). M.A.R. is a member of the c4c Ethics Expert Group and received compensation for ethical consulting activities from Bayer AG Wallace Crandall is employee of Eli Lilly and Co. P.C. is an employee of UCB, and owns stock in the company. She was previously an employee of GSK and owns stock in the company. N.R. has received honoraria for consultancies or speaker bureaus from the following pharmaceutical companies in the past 3 years: Ablynx, Amgen, Astrazeneca-Medimmune, Aurinia, Bayer, Bristol Myers and Squibb, Cambridge Healthcare Research (CHR), Celgene, Domain therapeutic, Eli-Lilly, EMD Serono, Glaxo Smith and Kline, Idorsia, Janssen, Novartis, Pfizer, Sobi, UCB. The IRCCS Istituto Giannina Gaslini (IGG), where NR works as full-time public employee has received contributions from the following industries in the last 3 years: Bristol Myers and Squibb, Eli-Lilly, F Hoffmann-La Roche, Novartis, Pfizer, Sobi. This funding has been reinvested for the research activities of the hospital in a fully independent manner, without any commitment with third parties. M.L. receives/has received consultation fees from CSL Behring, Novartis, Roche and Octopharma, travel grants from Merck Serono, and been awarded educational grants to organise meetings by Novartis, Biogen Idec, Merck Serono and Bayer. All other authors have no disclosures. Funding Information: Conect4children has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 777389. The Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA. The views expressed in this article are the personal views of the author(s) and should not be interpreted as made on behalf of, or reflecting the position of, the regulatory agency/agencies or organisations with which the author(s) is/are employed/affiliated . Publisher Copyright: © 2021, The Author(s).Background: The COVID-19 pandemic has had a devastating impact on multiple aspects of healthcare, but has also triggered new ways of working, stimulated novel approaches in clinical research and reinforced the value of previous innovations. Conect4children (c4c, www.conect4children.org) is a large collaborative European network to facilitate the development of new medicines for paediatric populations, and is made up of 35 academic and 10 industry partners from 20 European countries, more than 50 third parties, and around 500 affiliated partners. Methods: We summarise aspects of clinical research in paediatrics stimulated and reinforced by COVID-19 that the Conect4children group recommends regulators, sponsors, and investigators retain for the future, to enhance the efficiency, reduce the cost and burden of medicines and non-interventional studies, and deliver research-equity. Findings: We summarise aspects of clinical research in paediatrics stimulated and reinforced by COVID-19 that the Conect4children group recommends regulators, sponsors, and investigators retain for the future, to enhance the efficiency, reduce the cost and burden of medicines and non-interventional studies, and deliver research-equityWe provide examples of research innovation, and follow this with recommendations to improve the efficiency of future trials, drawing on industry perspectives, regulatory considerations, infrastructure requirements and parent–patient–public involvement. We end with a comment on progress made towards greater international harmonisation of paediatric research and how lessons learned from COVID-19 studies might assist in further improvements in this important area.publishersversionepub_ahead_of_prin

    HCN1 mutation spectrum: from neonatal epileptic encephalopathy to benign generalized epilepsy and beyond.

    No full text
    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control neuronal excitability and their dysfunction has been linked to epileptogenesis but few individuals with neurological disorders related to variants altering HCN channels have been reported so far. In 2014, we described five individuals with epileptic encephalopathy due to de novo HCN1 variants. To delineate HCN1-related disorders and investigate genotype-phenotype correlations further, we assembled a cohort of 33 unpublished patients with novel pathogenic or likely pathogenic variants: 19 probands carrying 14 different de novo mutations and four families with dominantly inherited variants segregating with epilepsy in 14 individuals, but not penetrant in six additional individuals. Sporadic patients had epilepsy with median onset at age 7 months and in 36% the first seizure occurred during a febrile illness. Overall, considering familial and sporadic patients, the predominant phenotypes were mild, including genetic generalized epilepsies and genetic epilepsy with febrile seizures plus (GEFS+) spectrum. About 20% manifested neonatal/infantile onset otherwise unclassified epileptic encephalopathy. The study also included eight patients with variants of unknown significance: one adopted patient had two HCN1 variants, four probands had intellectual disability without seizures, and three individuals had missense variants inherited from an asymptomatic parent. Of the 18 novel pathogenic missense variants identified, 12 were associated with severe phenotypes and clustered within or close to transmembrane domains, while variants segregating with milder phenotypes were located outside transmembrane domains, in the intracellular N- and C-terminal parts of the channel. Five recurrent variants were associated with similar phenotypes. Using whole-cell patch-clamp, we showed that the impact of 12 selected variants ranged from complete loss-of-function to significant shifts in activation kinetics and/or voltage dependence. Functional analysis of three different substitutions altering Gly391 revealed that these variants had different consequences on channel biophysical properties. The Gly391Asp variant, associated with the most severe, neonatal phenotype, also had the most severe impact on channel function. Molecular dynamics simulation on channel structure showed that homotetramers were not conducting ions because the permeation path was blocked by cation(s) strongly complexed to the Asp residue, whereas heterotetramers showed an instantaneous current component possibly linked to deformation of the channel pore. In conclusion, our results considerably expand the clinical spectrum related to HCN1 variants to include common generalized epilepsy phenotypes and further illustrate how HCN1 has a pivotal function in brain development and control of neuronal excitability
    corecore