124 research outputs found

    Modulation of Host Immunity by Helminths:The Expanding Repertoire of Parasite Effector Molecules

    Get PDF
    Helminths are extraordinarily successful parasites due to their ability to modulate the host immune response. They have evolved a spectrum of immunomodulatory molecules that are now beginning to be defined, heralding a molecular revolution in parasite immunology. These discoveries have the potential both to transform our understanding of parasite adaptation to the host and to develop possible therapies for immune-mediated disease. In this review we will summarize the current state of the art in parasite immunomodulation and discuss perspectives on future areas for research and discovery

    Regulatory B Cells - Implications in Autoimmune and Allergic Disorders

    Get PDF
    B lymphocytes are a major player in the immune system and their best understood effector functions are antibody production, presentation of antigens to T cells and modulation of immune responses via cytokine production. Most B cell functions are considered to amplify immune responses, but it has also been demonstrated that due to production of immunosuppressive cytokines or antibodies, B cells can down-regulate immune responses and have the ability to induce tolerance. These B cells with regulatory capacity (Breg cells) have been shown to suppress effector functions of various target cells including T cells, dendritic cells and macrophages, and can even convert effector T cells into regulatory T cells. The most prominent mechanism of Breg mediated suppression is the release of anti-inflammatory cytokines such as IL-10 and TGF-β. Additional suppression mechanisms via cell-cell contact, involving surface molecules such as program death-1 (PD-1), CD80/CD86 and FasL mediating target cell apoptosis, have been described as well. Most importantly, Breg cells have been implicated in various inflammatory conditions, such as allergic and autoimmune diseases. There is evidence for Breg deficiencies in human SLE patients and various adoptive transfer experiments in mouse models of autoimmune and allergic diseases indicate that Breg cells are capable of suppressing disease development. In this review we endeavour to give an overview of the current knowledge about regulatory B cell immunobiology and their implications in allergic and autoimmune conditions.published_or_final_versio

    Schistosome Egg Migration: Mechanisms, Pathogenesis and Host Immune Responses

    Get PDF
    Many parasitic worms possess complex and intriguing life cycles, and schistosomes are no exception. To exit the human body and progress to their successive snail host, Schistosoma mansoni eggs must migrate from the mesenteric vessels, across the intestinal wall and into the feces. This process is complex and not always successful. A vast proportion of eggs fail to leave their definite host, instead becoming lodged within intestinal or hepatic tissue, where they can evoke potentially life-threatening pathology. Thus, to maximize the likelihood of successful egg passage whilst minimizing host pathology, intriguing egg exit strategies have evolved. Notably, schistosomes actively exert counter-inflammatory influences on the host immune system, discreetly compromise endothelial and epithelial barriers, and modulate granuloma formation around transiting eggs, which is instrumental to their migration. In this review, we discuss new developments in our understanding of schistosome egg migration, with an emphasis on S. mansoni and the intestine, and outline the host-parasite interactions that are thought to make this process possible. In addition, we explore the potential immune implications of egg penetration and discuss the long-term consequences for the host of unsuccessful egg transit, such as fibrosis, co-infection and cancer development

    Isolated Schistosoma mansoni eggs prevent allergic airway inflammation

    Get PDF
    Chronic helminth infection with Schistosoma (S.) mansoni protects against allergic airway inflammation (AAI) in mice and is associated with reduced Th2 responses to inhaled allergens in humans, despite the presence of schistosome-specific Th2 immunity. Schistosome eggs strongly induce type 2 immunity and allow to study the dynamics of Th2 versus regulatory responses in the absence of worms. Treatment with isolated S. mansoni eggs by i.p. injection prior to induction of AAI to ovalbumin (OVA)/alum led to significantly reduced AAI as assessed by less BAL and lung eosinophilia, less cellular influx into lung tissue, less OVA-specific Th2 cytokines in lungs and lung-draining mediastinal lymph nodes and less circulating allergen-specific IgG1 and IgE antibodies. While OVA-specific Th2 responses were inhibited, treatment induced a strong systemic Th2 response to the eggs. The protective effect of S. mansoni eggs was unaltered in mu MT mice lacking mature (B2) B cells and unaffected by Treg cell depletion using anti-CD25 blocking antibodies during egg treatment and allergic sensitization. Notably, prophylactic egg treatment resulted in a reduced influx of pro-inflammatory, monocyte-derived dendritic cells into lung tissue of allergic mice following challenge. Altogether, S. mansoni eggs can protect against the development of AAI, despite strong egg-specific Th2 responses

    The mucosal adjuvant cholera toxin B instructs non-mucosal dendritic cells to promote IgA production via retinoic acid and TGF-β

    Get PDF
    It is currently unknown how mucosal adjuvants cause induction of secretory immunoglobulin A (IgA), and how T cell-dependent (TD) or -independent (TI) pathways might be involved. Mucosal dendritic cells (DCs) are the primary antigen presenting cells driving TI IgA synthesis, by producing a proliferation-inducing ligand (APRIL), B cell activating factor (BAFF), Retinoic Acid (RA), TGF-beta or nitric oxide (NO). We hypothesized that the mucosal adjuvant Cholera Toxin subunit B (CTB) could imprint non-mucosal DCs to induce IgA synthesis, and studied the mechanism of its induction. In vitro, CTB-treated bone marrow derived DCs primed for IgA production by B cells without the help of T cells, yet required co-signaling by different Toll-like receptor (TLR) ligands acting via the MyD88 pathway. CTB-DC induced IgA production was blocked in vitro or in vivo when RA receptor antagonist, TGF-beta signaling inhibitor or neutralizing anti-TGF-beta was added, demonstrating the involvement of RA and TGF-beta in promoting IgA responses. There was no major involvement for BAFF, APRIL or NO. This study highlights that synergism between CTB and MyD88-dependent TLR signals selectively imprints a TI IgA-inducing capacity in non-mucosal DCs, explaining how CTB acts as an IgA promoting adjuvant

    E-cadherin expression in macrophages dampens their inflammatory responsiveness in vitro, but does not modulate M2-regulated pathologies in vivo

    Get PDF
    IL-4/IL-13-induced alternatively activated macrophages (M(IL-4/IL-13), AAMs or M2) are known to express E-cadherin, enabling them to engage in heterotypic cellular interactions and IL-4-driven macrophage fusion in vitro. Here we show that E-cadherin overexpression in Raw 264.7 macrophages inhibits their inflammatory response to LPS stimulation, as demonstrated by a reduced secretion of inflammatory mediators like interleukin (IL)-6, tumor necrosis factor (TNF) and nitric oxide (NO). To study the function of E-cadherin in M(IL-4/IL-13) macrophages in vivo, we generated macrophage-specific E-cadherin-deficient C57BL/6 mice. Using this new tool, we analyzed immunological parameters during two typical AAM-associated Th2-driven diseases and assessed Th2-associated granuloma formation. Although E-cadherin is strongly induced in AAMs during Taenia crassiceps helminth infections and allergic airway inflammation, its deletion in macrophages does not affect the course of both Th2 cytokine-driven diseases. Moreover, macrophage E-cadherin expression is largely redundant for granuloma formation around Schistosoma mansoni ova. Overall, we conclude that E-cadherin is a valuable AAM marker which suppresses the inflammatory response when overexpressed. Yet E-cadherin deletion in macrophages does not affect M(LPS+IFN gamma) and M(IL-4) polarization in vitro, nor in vivo macrophage function, at least in the conditions tested

    Host-microbe cross-talk in the lung microenvironment:implications for understanding and treating chronic lung disease

    Get PDF
    Chronic respiratory diseases are highly prevalent worldwide and will continue to rise in the foreseeable future. Despite intensive efforts over recent decades, the development of novel and effective therapeutic approaches has been slow. However, there is new and increasing evidence that communities of micro-organisms in our body, the human microbiome, are crucially involved in the development and progression of chronic respiratory diseases. Understanding the detailed mechanisms underlying this cross-talk between host and microbiota is critical for development of microbiome- or host-targeted therapeutics and prevention strategies. Here we review and discuss the most recent knowledge on the continuous reciprocal interaction between the host and microbes in health and respiratory disease. Furthermore, we highlight promising developments in microbiome-based therapies and discuss the need to employ more holistic approaches of restoring both the pulmonary niche and the microbial community

    Omega-1, a glycoprotein secreted by Schistosoma mansoni eggs, drives Th2 responses

    Get PDF
    Soluble egg antigens of the parasitic helminth Schistosoma mansoni (S. mansoni egg antigen [SEA]) induce strong Th2 responses both in vitro and in vivo. However, the specific molecules that prime the development of Th2 responses have not been identified. We report that omega-1, a glycoprotein which is secreted from S. mansoni eggs and present in SEA, is capable of conditioning human monocyte-derived dendritic cells in vitro to drive T helper 2 (Th2) polarization with similar characteristics as whole SEA. Furthermore, using IL-4 dual reporter mice, we show that both natural and recombinant omega-1 alone are sufficient to generate Th2 responses in vivo, even in the absence of IL-4R signaling. Finally, omega-1–depleted SEA displays an impaired capacity for Th2 priming in vitro, but not in vivo, suggesting the existence of additional factors within SEA that can compensate for the omega-1–mediated effects. Collectively, we identify omega-1, a single component of SEA, as a potent inducer of Th2 responses

    Helicobacter pylori Modulates the T Helper Cell 1/T Helper Cell 2 Balance through Phase-variable Interaction between Lipopolysaccharide and DC-SIGN

    Get PDF
    The human gastric pathogen Helicobacter pylori spontaneously switches lipopolysaccharide (LPS) Lewis (Le) antigens on and off (phase-variable expression), but the biological significance of this is unclear. Here, we report that Le+ H. pylori variants are able to bind to the C-type lectin DC-SIGN and present on gastric dendritic cells (DCs), and demonstrate that this interaction blocks T helper cell (Th)1 development. In contrast, Le− variants escape binding to DCs and induce a strong Th1 cell response. In addition, in gastric biopsies challenged ex vivo with Le+ variants that bind DC-SIGN, interleukin 6 production is decreased, indicative of increased immune suppression. Our data indicate a role for LPS phase variation and Le antigen expression by H. pylori in suppressing immune responses through DC-SIGN
    • …
    corecore