188 research outputs found

    Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels

    Get PDF
    ACKNOWLEDGEMENTS We thank Dennis Ojima and Daniel L. Sanchez for their encouragement on this topic. The authors gratefully acknowledge partial support as follows: J.L.F., L.R.L., T.L.R., E.A.H.S., and J.J.S., the Sao Paulo Research Foundation (FAPESP grant# 2014/26767-9); J.L.F., L.R.L., K.P., and T.L.R., The Center for Bioenergy Innovation, a U.S. Department of Energy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science (grant# DE-AC05-00OR22725); L.R.L., the Sao Paulo Research Foundation, and the Link Foundation; J.L.F. and K.P., USDA/NIFA (grant# 2013-68005-21298 and 2017-67019-26327); T.L.R., USDA/NIFA (grant# 2012-68005-19703); D.S.L. and S.P.L., the Energy Biosciences Institute. Data availability The DayCent model (https://www2.nrel.colostate.edu/projects/daycent/) is freely available upon request. Specification of DayCent model runs and automated model initialization, calibration, scenario simulation, results analysis, and figure generation were implemented in Python 2.7, using the numpy module for data processing and the matplotlib module for figure generation. Analysis code is available in a version-controlled repository (https://github.com/johnlfield/Ecosystem_dynamics). A working copy of the code, all associated DayCent model inputs, and analysis outputs are also available in an online data repository (https://figshare.com/s/4c14ec168bd550db4bad; note this URL is for accessing a private version of the repository, and will eventually be replaced with an updated URL for the public version of the repository, which will only be accessible after the journal-specified embargo date).Peer reviewedPostprintPublisher PD

    Reconstructing Disturbances and Their Biogeochemical Consequences over Multiple Timescales

    Get PDF
    Ongoing changes in disturbance regimes are predicted to cause acute changes in ecosystem structure and function in the coming decades, but many aspects of these predictions are uncertain. A key challenge is to improve the predictability of postdisturbance biogeochemical trajectories at the ecosystem level. Ecosystem ecologists and paleoecologists have generated complementary data sets about disturbance (type, severity, frequency) and ecosystem response (net primary productivity, nutrient cycling) spanning decadal to millennial timescales. Here, we take the first steps toward a full integration of these data sets by reviewing how disturbances are reconstructed using dendrochronological and sedimentary archives and by summarizing the conceptual frameworks for carbon, nitrogen, and hydrologic responses to disturbances. Key research priorities include further development of paleoecological techniques that reconstruct both disturbances and terrestrial ecosystem dynamics. In addition, mechanistic detail from disturbance experiments, long-term observations, and chronosequences can help increase the understanding of ecosystem resilienc

    Reconstructing Disturbances and Their Biogeochemical Consequences over Multiple Timescales

    Get PDF
    Ongoing changes in disturbance regimes are predicted to cause acute changes in ecosystem structure and function in the coming decades, but many aspects of these predictions are uncertain. A key challenge is to improve the predictability of postdisturbance biogeochemical trajectories at the ecosystem level. Ecosystem ecologists and paleoecologists have generated complementary data sets about disturbance (type, severity, frequency) and ecosystem response (net primary productivity, nutrient cycling) spanning decadal to millennial timescales. Here, we take the first steps toward a full integration of these data sets by reviewing how disturbances are reconstructed using dendrochronological and sedimentary archives and by summarizing the conceptual frameworks for carbon, nitrogen, and hydrologic responses to disturbances. Key research priorities include further development of paleoecological techniques that reconstruct both disturbances and terrestrial ecosystem dynamics. In addition, mechanistic detail from disturbance experiments, long-term observations, and chronosequences can help increase the understanding of ecosystem resilience

    BMQ

    Full text link
    BMQ: Boston Medical Quarterly was published from 1950-1966 by the Boston University School of Medicine and the Massachusetts Memorial Hospitals

    BMQ

    Full text link
    BMQ: Boston Medical Quarterly was published from 1950-1966 by the Boston University School of Medicine and the Massachusetts Memorial Hospitals

    Renal artery sympathetic denervation:observations from the UK experience

    Get PDF
    Background: Renal denervation (RDN) may lower blood pressure (BP); however, it is unclear whether medication changes may be confounding results. Furthermore, limited data exist on pattern of ambulatory blood pressure (ABP) responseā€”particularly in those prescribed aldosterone antagonists at the time of RDN. Methods: We examined all patients treated with RDN for treatment-resistant hypertension in 18 UK centres. Results: Results from 253 patients treated with five technologies are shown. Pre-procedural mean office BP (OBP) was 185/102 mmHg (SD 26/19; n = 253) and mean daytime ABP was 170/98 mmHg (SD 22/16; n = 186). Median number of antihypertensive drugs was 5.0: 96 % ACEi/ARB; 86 % thiazide/loop diuretic and 55 % aldosterone antagonist. OBP, available in 90 % at 11 months follow-up, was 163/93 mmHg (reduction of 22/9 mmHg). ABP, available in 70 % at 8.5 months follow-up, was 158/91 mmHg (fall of 12/7 mmHg). Mean drug changes post RDN were: 0.36 drugs added, 0.91 withdrawn. Dose changes appeared neutral. Quartile analysis by starting ABP showed mean reductions in systolic ABP after RDN of: 0.4; 6.5; 14.5 and 22.1 mmHg, respectively (p < 0.001 for trend). Use of aldosterone antagonist did not predict response (p < 0.2). Conclusion: In 253 patients treated with RDN, office BP fell by 22/9 mmHg. Ambulatory BP fell by 12/7 mmHg, though little response was seen in the lowermost quartile of starting blood pressure. Fall in BP was not explained by medication changes and aldosterone antagonist use did not affect response
    • ā€¦
    corecore