Aberystwyth University

Reconstructing Disturbances and Their Biogeochemical Consequences over Multiple Timescales

Mclauchlan, Kendra K.; Higuera, Philip E.; Gavin, Daniel G.; Perakis, Steven S.; Mack, Michelle C.; Alexander, Heather; Battles, John; Biondi, Franco; Buma, Brian; Colombaroli, Daniele; Enders, Sara K.; Engstrom, Daniel R.; Hu, Feng Sheng; Marlon, Jennifer R.; Marshall, John; Mcglone, Matt; Morris, Jesse L.; Nave, Lucas E.; Shuman, Bryan; Smithwick, Erica A. H.

Published in: **BioScience**

DOI:

10.1093/biosci/bit017

Publication date: 2014

Citation for published version (APA):

Mclauchlan, K. K., Higuera, P. E., Gavin, D. G., Perakis, S. S., Mack, M. C., Alexander, H., Battles, J., Biondi, F., Buma, B., Colombaroli, D., Enders, S. K., Engstrom, D. R., Hu, F. S., Marlon, J. R., Marshall, J., Mcglone, M., Morris, J. L., Nave, L. E., Shuman, B., ... Williams, J. J. (2014). Reconstructing Disturbances and Their Biogeochemical Consequences over Multiple Timescales. BioScience, 64(2), 105-116. https://doi.org/10.1093/biosci/bit017

General rights

Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

· Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research.
You may not further distribute the material or use it for any profit-making activity or commercial gain
You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

tel: +44 1970 62 2400 email: is@aber.ac.uk

Reconstructing disturbances and their biogeochemical consequences over multiple timescales

Journal:	BioScience
Manuscript ID:	13-0040.R1
Manuscript Type:	Overview
Date Submitted by the Author:	n/a
Complete List of Authors:	McLauchlan, Kendra; Kansas State University, Department of Geography Higuera, Philip; University of Idaho, College of Natural Resources Gavin, Daniel; University of Oregon, Department of Geography Perakis, Steven; US Geological Survey, Forest and Rangeland Ecosystem Science Center Mack, Michelle; University of Florida, Department of Biology Alexander, Heather; University of Texas at Brownsville, Department of Biological Sciences Battles, John; University of California, Department of Environmental Science, Policy, and Management Biondi, Franco; University of Colorado, Cooperative Institute for Research in Environmental Science Colombaroli, Daniele; University of Bern, Oeschger Centre for Climate Change Research Enders, Sara; University of California, Department of Land, Air, and Water Resources Engstrom, Daniel; Science Museum of Minnesota, St. Croix Watershed Research Station Hu, Feng Sheng; University of Idho, College of Natural Resources MarShall, John; University of Idho, College of Natural Resources McGlone, Matt; Landcare Research, Morris, Jesse; University of Helsinki, Department of Geosciences and Geography Nave, Lucas; University of Michigan, Department of Geosciences and Geography Nave, Lucas; University of Michigan, Department of Geology and Evolutionary Biology Shuman, Bryan; University of Bordeaux, Wardle, David; Swedish University of Agricultural Sciences, Department of Forest Ecology and Management Williams, Christopher; Franklin & Marshall College, Department of Earth and Environment Williams, Joseph; Aberystwyth University, Institute of Geography and Earth Sciences

Key words:	disturbance ecology, landscape ecology, nutrient cycling, plant ecology
Abstract: Abstract: Abstract: Abstract: Abstract: Ongoing changes in disturbance regimes are predicted to cause acute changes in ecosystem structure and function in coming decades, but m aspects of these predictions are uncertain. A key challenge is to impro the predictability of post-disturbance biogeochemical trajectories at th ecosystem level. Both ecosystem ecologists and paleoecologists have generated complementary datasets about disturbance (type, severity, frequency) and ecosystem response (net primary productivity, nutrien cycling) spanning decadal to multi-millennial timescales. Here, we take first steps toward a full integration of these datasets by: (1) reviewing disturbances are reconstructed using dendrochronological and sediment archives, and (2) summarizing the conceptual frameworks for carbon, nitrogen, and hydrologic responses to disturbances. Key research prior include further development of paleoecological techniques that reconssiboth disturbances and terrestrial ecosystem dynamics. Additionally, mechanistic detail from disturbance experiments, long-term observation and chronosequences can help to increase the temporal understanding ecosystem resilience.	
	SCHOLARONE* Manuscripts

Reconstructing disturbances and their biogeochemical consequences over multiple timescales Kendra K. McLauchlan¹, Philip E. Higuera², Daniel G. Gavin³, Steven S. Perakis⁴, Michelle C. Mack⁵. Heather Alexander⁶. John Battles⁷. Franco Biondi⁸. Brian Buma⁹. Daniele Colombaroli¹⁰, Sara Enders¹¹, Daniel R. Engstrom¹², Feng Sheng Hu¹³, Jennifer R. Marlon¹⁴, John Marshall², Matt McGlone¹⁵, Jesse L. Morris¹⁶, Lucas Nave¹⁷, Bryan N. Shuman¹⁸, Erica Smithwick¹⁹, Dunia H. Urrego²⁰, David A. Wardle²¹, Christopher J. Williams²², Joseph J. Williams²³ ¹ Department of Geography, Kansas State University, Manhattan, Kansas, USA ² College of Natural Resources, University of Idaho ³ Department of Geography, University of Oregon, Eugene, Oregon, USA ⁴ US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, 97331 ⁵ Department of Biology, University of Florida ⁶ Department of Biological Sciences, University of Texas at Brownsville ⁷ Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA ⁸ Department of Geography, University of Nevada, Reno, NV 89557 ⁹ Cooperative Institute for Research in Environmental Sciences. University of Colorado, Boulder, Colorado ¹⁰ Oeschger Centre for Climate Change Research and Institute of Plant Sciences, University of Bern, Switzerland ¹¹ Department of Land, Air, & Water Resources, University of California Davis ¹² St. Croix Watershed Research Station, Science Museum of Minnesota, Marine on St. Croix, MN 55047 USA ¹³ Department of Plant Biology, University of Illinois ¹⁴ Yale University, School of Forestry and Environmental Studies, New Haven, Connecticut, USA ¹⁵ Landcare Research, Lincoln, New Zealand ¹⁶ Department of Geosciences and Geography, University of Helsinki, Finland ¹⁷ Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI USA ¹⁸ Department of Geology and Geophysics, University of Wyoming, Laramie, WY ¹⁹ Department of Geography and Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, PA 16802 ²⁰ Ecole Pratique des Hautes Etudes, Unité Mixte de Recherche-Centre National de la Recherche Scientifique UMR-CNRS 5805 Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), University of Bordeaux, France ²¹ Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE 90183 Umeå, Sweden ²² Department of Earth & Environment, Franklin & Marshall College, Lancaster, PA, USA

45 46 47	²³ Institute of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK
48 49 50	Abstract
51	Ongoing changes in disturbance regimes are predicted to cause acute changes in
52	ecosystem structure and function in coming decades, but many aspects of these
53	predictions are uncertain. A key challenge is to improve the predictability of post-
54	disturbance biogeochemical trajectories at the ecosystem level. Both ecosystem
55	ecologists and paleoecologists have generated complementary datasets about
56	disturbance (type, severity, frequency) and ecosystem response (net primary
57	productivity, nutrient cycling) spanning decadal to multi-millennial timescales. Here,
58	we take the first steps toward a full integration of these datasets by: (1) reviewing
59	how disturbances are reconstructed using dendrochronological and sedimentary
60	archives, and (2) summarizing the conceptual frameworks for carbon, nitrogen, and
61	hydrologic responses to disturbances. Key research priorities include further
62	development of paleoecological techniques that reconstruct both disturbances and
63	terrestrial ecosystem dynamics. Additionally, mechanistic detail from disturbance
64	experiments, long-term observations, and chronosequences can help to increase the
65	temporal understanding of ecosystem resilience.
66 67 68 69 70	Keywords ecosystem ecology, disturbance, fire regime, nitrogen cycling, resilience

2
3
4
5
6
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
22
22
20
24
25
26
27
28
29
30
31
32
33
34
25
30
30
37
38
39
40
41
42
43
44
45
46
47
10
40
49 50
50
51
52
53
54
55
56
57
58
50
03
00

1

7172 Introduction

73 Ecological disturbances in terrestrial systems are discrete events that reduce 74 primary producer biomass and strongly regulate material and energy flows. Several 75 studies document increasing size and/or severity of a variety of disturbance types. 76 including beetle outbreaks, storms, and wildfires during recent decades (Seidl et al. 77 2011). This amplification is raising questions about which disturbances are 78 unprecedented, and what conditions may lead to threshold behavior in ecosystem 79 responses. It has been particularly difficult to identify incipient shifts in disturbance 80 regimes (Turner 2010). The synergistic effects of interactions among disturbance 81 characteristics, life history parameters, and climate change are of particular concern 82 because disturbances have potentially substantial consequences for carbon and 83 nutrient cycling, and hydrology. We cannot properly evaluate modern disturbance events without the baseline 84 85 information provided by decadal- to multimillennial-scale records of disturbances

and ecosystem responses. Such long-term records are derived primarily from tree-

87 ring and sedimentary archives, and they allow the reconstruction of past

88 disturbance events and regimes. When combined with both detailed observational

data about individual events and with novel proxies of ecosystem processes, the

90 biogeochemical consequences of changing disturbance regimes can begin to be

91 assessed. An important challenge now is to integrate these two approaches with

92 respect to ecological processes and spatiotemporal patterns.

93	A variety of disturbance agents, such as fire, wind, drought, or insect outbreaks, are
94	familiar to most ecologists as regulating short-term ecosystem processes, such as
95	nutrient cycling and carbon storage (Pickett and White 1985). These same
96	disturbances can also determine long-term ecosystem trajectories. For example,
97	without soil-replenishing disturbance, productivity may decrease and ecosystems
98	may retrograde (Wardle et al. 2004). Chronic disturbance, however, can also lead to
99	long-term reduction of productivity through nutrient depletion (Boerner 1982).
100	Although the importance of disturbance to ecosystem functioning is recognized, the
101	biogeochemical consequences of disturbances have been particularly difficult to
102	quantify over long timescales. An increasing amount of complementary research
103	now provides the basis for understanding decadal- to millennial-scale ecosystem
104	change, including high temporal-resolution post-disturbance chronosequences,
105	innovative techniques applied to sediment and tree-ring records to reconstruct past
106	ecosystem change, and long-term ecological measurements of several decades in
107	duration.
108	The integration of ecosystem processes across multiple timescales is crucial for
109	identifying the biogeochemical consequences of disturbances. Ecosystem ecologists
110	working on the modern landscape ("neo-ecologists") have had success in

111 quantifying short-term responses to disturbance through direct measurements

112 (Mack et al. 2011). In contrast, paleoecologists have been successful at quantifying

113 past disturbance regimes to contextualize modern disturbances (Marlon et al. 2012).

114 The long-term perspective that paleorecords provide has proven increasingly useful

to conservation management (Willis et al. 2007), ecosystem service analyses

3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
20	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
20	
30	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
23	
54	
55	
56	
57	
58	
59	
60	

116	(Dearing et al. 2012), and restoration ecology. There is now potential to use records
117	of disturbance events and regimes to calculate the biogeochemical consequences of
118	disturbance across climate types, vegetation types, and soil development stages.
119	Integrating the two views— paleo- and neo-ecosystem ecology— is a challenge due
120	to differences between disciplines in methodology, timescale, and spatial extent. Yet
121	this integration is crucial for understanding the dynamic nature of disturbance and
122	potential feedbacks in the Earth system among climate change, disturbance, and
123	biogeochemistry. Without additional information from paleorecords, extrapolating
124	modern ecosystem responses across time and space will likely be ineffective, and
125	direct measurements of ecosystem response are needed to interpret the indirect
126	proxies available in paleorecords. Here, we take the first steps toward this
127	integration by (1) reviewing how disturbances are reconstructed using
128	dendrochronological and sedimentary archives, (2) summarizing the conceptual
129	frameworks for carbon, nitrogen, and hydrologic responses to disturbances, and (3)
130	identifying key research priorities for linking the mechanistic knowledge of
131	disturbance from neo-ecology with the long-term perspective granted by
132	paleoecology.

133

134 **Reconstructing past disturbance**

A variety of disturbance events can be reconstructed from annual to multimillennial timescales (Table 1). Disturbance agents particularly important in midlatitude terrestrial ecosystems are fire, drought, and insect outbreaks. From
paleorecords, it is possible to reconstruct disturbance agent, severity, spatial

1	
2	
2	
4	
4	
5	
6	
7	
8	
0	
3	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
21 20	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
41	
42	
43	
ΔΔ	
15	
40	
40	
47	
48	
49	
50	
51	
52	
52	
03	
54	
55	
56	
57	
58	
59	
60	
00	

139 location, and spatial extent. We focus here on records available from tree-rings and 140 lacustrine sediment sequences. Long-term instrumental data are helpful for 141 calibration of potential proxy records. The most robust reconstructions use either 142 multiple approaches or a detailed calibration dataset. 143 Observational, remote-sensing, and historical records of disturbance offer detailed 144 accounts of event timing, location, and ecosystem impacts, but they typically span 145 only decades or centuries at most (Raffa et al. 2008). Tree-ring records can extend 146 this timeframe by providing spatially-precise, sub-annually resolved records of low-147 and high-severity fires (Falk et al. 2011), insect outbreaks (Veblen et al. 1994), and 148 drought (Cook et al. 2004) across a range of forest types. Proxy variables from 149 sedimentary records can provide disturbance reconstructions on even longer 150 timescales, such as several millennia, but generally have lower spatial and temporal 151 resolution. 152 *Fire*. Wildfires are the most commonly reconstructed disturbance events from 153 sediment records that span centuries to millennia (Gavin et al. 2007, Higuera et al. 154 2010). Two aspects of past fire occurrence are focal points for these reconstructions, 155 spanning two spatial scales. Stand-level or "local" fire occurrence may be 156 interpreted from distinct charcoal peaks in high-resolution sediment records of 157 macroscopic charcoal. For example, fire events in a coniferous montane forest were 158 reconstructed from macroscopic charcoal influx to a small lake basin (figure 1). 159 Several fire regimes can be distinguished over a 6,000 year time period. Regional-160 level biomass burning or area burned is inferred from standardized summaries of 161 total charcoal accumulation in a record or network of records, and quantified as an

index (Marlon et al. 2012), or area burned (Higuera et al. 2011). Biomass burning
can then be linked to independent proxies for vegetation to infer the fuel types and
fire severity.

Fire history investigations based on tree-ring records employ dating of fire scars,
stand establishment, or both depending on the type of wildfire regime being
investigated. Fire scar networks in western North America have been particularly
effective for identifying past landscape and climate drivers of low-intensity fire
events (Falk et al. 2011). Mixed severity fire regimes can be detected with
dendrochronological techniques along with reconstructions of fire frequency and
area burned (Hessl 2011).

Drought. Paleorecords can also provide accurate reconstructions of drought conditions. Drought is defined in multiple ways based on spatial and temporal changes in precipitation, frequency of precipitation events, and severity of impacts. Relatively short (< 200 years) instrumental time series provide data on streamflow, precipitation, soil moisture, Palmer Drought Severity Index, flood events, and lake levels (Biondi and Strachan 2012). Dendrohydrology uses growth records from long-lived tree species to extend the contemporary instrumental hydrologic records one to two orders of magnitude (Stine 1994).

Lake sediment cores further extend the temporal scale of hydrologic reconstruction
to millennial and longer timeframes. From sedimentary records, droughts can be
reconstructed from changes in lake level, diatom communities, and geochemical
proxies (Laird et al. 2003). These paleolimnological methods have been most

Page 9 of 40

1	
2	
2	
1	
4 F	
5	
6	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
_10 ⊿0	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

206

184	commonly applied to closed-basin lakes in arid or semi-arid landscapes where
185	changes in lake-level and salinity are closely related to shifts in hydrologic balance.
186	Insect outbreaks. During recent decades, irruptive populations of native bark beetles
187	(Dendroctonus spp., Ips spp.) have exceeded the spatial scale and intensity of past
188	outbreaks by an order of magnitude (Raffa et al. 2008). In western North America,
189	these disturbances have been attributed to the complex interaction of accelerating
190	insect reproductive cycles related to warming air temperatures, decreased tree
191	vigor from moisture deficiencies and concomitant pathogen infestation, and high
192	stand densities of suitably-sized host trees (Mitton and Ferrenberg 2012). Tree-ring
193	reconstructions provide evidence that native bark beetles are an essential
194	component of ecosystem function and promote forest regeneration (Sherriff et al.
195	2011). However, what is believed to be the unprecedented scale and severity of
196	recent outbreaks suggests that neither the dynamics of beetle disturbances nor their
197	biogeochemical impacts are well understood (Rhoades et al. 2013). Longer-term
198	ecological records would help to contextualize the recent episodes. For example,
199	tree-ring records indicate that the recent mountain pine beetle epidemic in central
200	British Columbia was preceeded by at least two 19 th century outbreaks (Hrinkevich
201	and Lewis 2011). The need to extend the temporal record of past bark beetle
202	disturbances is currently being pursued using lake sediments. Proxy and direct
203	evidence, including pollen and plant and insect macrofossils, has been useful to
204	reconstruct past insect disturbances over centennial to millennial timescales
205	(Morris and Brunelle 2012).

Reconstructing biogeochemistry

2		
4	207	In addition to reconstructing disturbance regimes, the paleoecological record has
5 6	208	the potential to provide key information on ecosystem pools and fluxes. This
7	200	
8 9	209	information is provided through proxy records that range from standard
10 11	210	paleoecological techniques to newly-developed methods in lacustrine sediment
12 13 14	211	cores (Smol 2001). The pollen record indicates plant community composition, and
15 16	212	pollen influx can provide an index of terrestrial biomass. Organic matter content of
17 18 19	213	lake sediment is an indicator of combined lake productivity and detrital terrestrial
20 21	214	sources; separating these sources is possible through the carbon:nitrogen ratio.
22 23	215	Stable isotopes of carbon and nitrogen also relate to the cycling and productivity
24 25 26	216	within the aquatic and terrestrial ecosystems. The toolbox of methods is growing
27 28	217	rapidly. Newer methods include quantifying the elemental composition of
29 30 31	218	sediments to identify sources of mineral matter, measuring compound-specific
32 33	219	isotopes that relate to sources and types of organic matter (e.g., terrestrial vs.
34 35	220	aquatic), and using additional proxies such as magnetic properties to interpret
30 37 38	221	geochemical changes.
39	222	
40	222	The biogeochemistry of disturbance
41 42	223	
43	225	Carbon
44	220	
45 46	226	The cycling of carbon (C) is a fundamental characteristic of ecosystem functioning,
47		
48 49	227	and it is highly sensitive to disturbance. In the absence of change in the disturbance
50 51	228	regime, C storage in terrestrial ecosystems is constrained by stable rates of
52 53	229	accumulation and degradation. Ecosystems therefore have a characteristic C
55 56	230	carrying capacity that may fluctuate around this capacity in time and space, i.e. the
57 58	231	shifting mosaic steady state (Bormann and Likens 1979). Thus, over decadal
59 60		

1 ~

1	
2	
2	
1	
4 5	
5	
0	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
24	
20	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42	
Δ <u>Λ</u>	
74 15	
40	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
_	

232	timescales the net ecosystem C balance (NECB) trends toward zero (Chapin et al.
233	2006), assuming no directional changes in ecosystem composition and/or climate.
234	However, changes in the disturbance regime can lead to dramatic shifts in C cycling
235	and NECB. Often these changes are realized over long time frames (hundreds to
236	thousands of years) that require a broad and integrated temporal perspective
237	available only from paleorecords or chronosequences. Regional-scale vegetation
238	shifts have the potential to influence the global C balance. For example, 96 Tg of C
239	accumulated in boreal peatlands during the Holocene (Dean and Gorham 1998).
240	Thus, one key challenge is to detect and understand how fundamental shifts in
241	disturbance regimes can alter C cycling through ecosystem reorganizations.
242	Changes in C status may be triggered by unusually severe events, compound
243	disturbances, or major changes in disturbance regimes that exceed the ecological
244	resilience of the system and trigger changes in the vegetation and soil. Therefore
245	understanding long-term C dynamics in ecosystems requires integration of
246	contemporary and paleoecological approaches. Studies of the modern landscape are
247	constrained by their narrow temporal context, without baseline information and
248	past histories to fully interpret measured recent changes in NECB. Thus, it is difficult
249	to determine if recently-observed changes have precedent or if they represent novel
250	conditions.
251	Paleoecological studies capture the long-term patterns in disturbance regimes, state
252	changes in the vegetation, and coarse measures of C stores. The example
253	sedimentary sequence from an old-growth conifer forest shown in figure 1

254 simultaneously records organic content, changes in fire regimes, and terrestrial

Page 12 of 40

2	
3 4	255
5 6 7	256
8 9	257
10 11 12	258
13 14	259
15 16 17	260
18 19	261
20 21 22	262
23 24	263
25 26 27	264
27 28 29	265
30 31	266
32 33 34	267
35 36	268
37 38 39	269
40 41	270
42 43 44	271
45 46	272
47 48 49	273
49 50 51	274
52 53	275
54 55 56	276
57 58	277
59 60	

1

vegetation composition, in some cases in response to rapid climate change. But the nature of proxy records is indirect, and the temporal and spatial resolution is often too low to identify precise mechanisms or consequences of change. For many modern ecosystems, C lost during a disturbance event is largely recovered before the next disturbance, and NECB can be considered relatively stable. The initial driver of this trajectory is C-fixation in aboveground live biomass such as wood, with relatively linear rates of C accumulation in the first few decades after a disturbance event (figure 2). However, the subsequent redistribution of this C into soil pools with longer turnover times can take centuries, and these slower processes lead to a saturation of C accumulation rate on those timescales. When comparing data from post-disturbance chronosequences with the paleoecological record, it is clear that both compound disturbances and state changes in the disturbance regime alter these trajectories. Additionally, some of these state changes occurred rapidly (i.e. a shift from forest to grassland in less than 300 years) (Williams et al. 2010). There are also contemporary examples of incipient shifts in the disturbance regime, and model results that predict futures with drastically different C balances (Bond et al. 2005). In short, changes in the disturbance regime can drive state changes in ecosystem structure and function with respect to C storage. We present a conceptual model of how NECB and disturbance interval interact over long timescales, and how this would be seen in a sedimentary paleorecord (figure 3). Our current understanding suggests that a single disturbance event, even one of high severity such as a stand-replacing wildfire, will not necessarily alter long-term C balance. Net Primary Productivity (NPP) can keep pace with periodic disturbance,

י ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
∠U 24	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
10	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
60	
111	

278	and NECB is stable. We recognize that recovery patterns will vary, but we expect
279	that these two processes will usually balance, as illustrated by the 1:1 line that
280	compares the time to recover the C lost with the time since disturbance as 1:1
281	(figure 3b). Observations greater than the 1:1 line imply gains in NECB and slopes
282	less than 1 imply losses in NECB. Conceptually we expect ecosystems with a
283	consistent disturbance regime and ecological community to fluctuate around this
284	1:1 line.

285 Severe, progressive, and/or continual deviations away from this 1:1 ratio would 286 indicate a potential biogeochemical state change (figure 3). We set the 1:1 line as 287 the neutral state where C dynamics and disturbance regime are in balance. 288 Perturbations of either the disturbance regime or time to C recovery would drive 289 the system away from the 1:1 line. When there is a state shift, there is a potential for 290 changes in the C balance compared to the previous system. It is important to note 291 that there is no assumption that the baseline is constant. Indeed, the value of this 292 conceptual figure is to explicitly acknowledge that the baseline changes with a shift 293 in the biogeochemical state. Also the interpretation of the ratio of time to 294 disturbance: time to C recovery is not interpreted in isolation (Turner et al. 1993). 295 Other information from the paleoecological record (e.g., charcoal-inferred change in 296 fire frequency, pollen-inferred change in plant community) is necessary to infer the 297 processes involved.

298 Small changes in the disturbance return interval can lead to cascading

299 biogeochemical effects, as demonstrated by an example from the tallgrass prairie

300 ecosystems of North America. This grassland disturbance regime is defined by a

301	cycle of annual fires with the C losses replaced each year (i.e. 1:1). If these fires are
302	suppressed by human intervention, the time between disturbances lengthens,
303	leading to net C gain as woody plants increase (C balance>1). Evidence from
304	experimental burning suggests that increasing fire return interval from 1 to 4 years
305	can initiate the first steps of vegetation change (Briggs et al. 2005). The initial C
306	gains are intensified by a series of feedbacks that culminates in woody plant
307	encroachment (Knapp et al. 2008). When C ceases to accumulate (apex of curve)
308	under the new disturbance regime, we define it as a biogeochemical state change.
309	There is evidence from many other grassland systems that this state change is
310	currently occurring, leading to increased net aboveground C stocks (Throop and
311	Archer 2008). In these cases, the biogeochemical state change is driven by a shift in
312	plant community composition, which is detectable in the pollen record.
313	The reverse process has also been seen in the paleorecord. Over time, non-
314	stationary changes in climate (warming and drying) increase the fire frequency
315	leading to a shorter disturbance interval relative to the C recovery time, eventually
316	resulting in a net loss of C and potentially establishment of a different ecological
317	community. When the C losses stabilize around a new average value, another
318	biogeochemical state change is indicated. Again this change is driven by a vegetation
319	shift: this time from woodland to shrubland, such as has been seen in paleorecords
320	from the southwestern U.S. It is an open question at this time if it is possible to get a
321	large change in carbon balance without a major vegetation shift.
322	Finally, disturbance and atmospheric carbon dioxide concentrations are tightly
322	Finally, disturbance and atmospheric carbon dioxide concentrations are tightly

Page 15 of 40

324 disturbance event. The rate and mechanism of release varies with the type of
325 disturbance, and again NECB may not change in the short-term without significant
326 feedbacks to long-term climate change. Human management of fire regimes has
327 been demonstrated to affect C budgets from local to global scales (Bowman et al.
328 2011).

329330 Nitrogen

Nitrogen (N) dynamics have many similarities with C dynamics after a single disturbance event, and widespread N limitation of NPP and C accumulation often yields close couplings of N and C dynamics after disturbance (Vitousek and Reiners 1975). However, there are also important differences in the cycling of these two elements that can lead to different long-term trajectories. N₂ is more energetically costly to fix than CO₂, and yet once fixed into an ecosystem, a single atom of N can be recycled to fix many atoms of C. Despite persistent challenges in calculating ecosystem N budgets on decadal timescales, the general paradigm for temperate ecosystems is that after a single disturbance event, ecosystem N stocks recover to pre-disturbance levels within decades. Such dynamics have been seen in the post-fire chronosequences of *Pinus cortorta* forests in the Greater Yellowstone Ecosystem (figure 4, Smithwick et al. 2009). Rapid N accumulation is also demonstrated in the well-studied primary successional chronosequence in Glacier Bay, Alaska, where spruce and hemlock forests accumulated their maximum N contents within 150 years of glacial retreat (Milner et al. 2007). Thus, on decadal to century timescales, disturbance alone often does not alter long-term nutrient stocks or limitation.

347	However, the biogeochemical impact of a single disturbance event may also serve to
348	initiate an increase or a decrease in long-term ecosystem N stocks (figure 5a). The
349	disturbance initially causes nutrient loss, but recovery trajectories can vary
350	depending on interactions between the disturbance, ecosystem properties, and
351	ecosystem boundary conditions. One scenario is a net long-term loss of N due to
352	disturbance, as in systems where N fixation is so limited that it cannot replace
353	hydrologic and gaseous N losses. Changes in disturbance intensity or frequency as a
354	result of altered boundary conditions, such as changing climate or vegetation shift,
355	may also prevent reaccumulation of N after disturbance (Yelenik et al. 2013).
356	Alternatively, disturbance can in some cases promote long-term increases in N
357	stocks, such as where robust post-fire N fixers like Alnus colonize and add more N
358	than is lost in a single disturbance event (Perakis et al. 2011). Similarly, altered
359	boundary conditions such as a wetter climate might permit higher N accumulation
360	after disturbance.
361	Thus, disturbance-driven increases or losses of nutrients can alter longer-term
362	nutrient limitation when considered over long timescales (figure 5b). Each step of
363	this biogeochemical staircase can therefore serve to either increase ("step up") or
364	decrease ("step down") nutrient availability. In turn, these disturbance-driven
365	changes in nutrient status fall within a broader biogeochemical template derived
366	from very long-term chronosequences that reveal how ecosystems change over
367	long-term soil development. Whereas soil fertility often increases through primary

368 succession, ultimately very old ecosystems undergo "retrogression" in the absence

369 of catastrophic disturbance over millennial timescales (Peltzer et al. 2010).

Characteristics of retrogressive ecosystems include reduced availability and
amounts of soil nutrients (notably phosphorus), reduced NPP, and low standing
biomass. In retrogressive ecosystems, disturbance events that expose unweathered
soil parent material can replenish available nutrient pools and increase NPP (figure
5c). This seemingly counterintuitive response to disturbance works much the same
way as geological uplift, glacial retreat, or volcanism on longer timescales (Porder et
al. 2006).

Our understanding of these millennial- and longer-scale processes has been derived primarily from chronosequences, a series of sites with different histories used to reconstruct both primary (soil-development) and secondary (stand development) successional processes. This approach has been very powerful in ecosystem ecology, even if it often only provides information from discrete points in time (Laliberte et al. 2012). Paleorecords, for example from lake sediment cores, can complement chronosequence studies by providing continuous records that span many millennia (Engstrom et al. 2000). Such records can be used to test theoretical predictions of the conditions when ecosystems should be responsive to disturbance, and the direction of the response. Thus, ecosystems in very young stages of development where NPP is limited by N would be expected to respond differently to disturbance than very old retrogressive ecosystems limited by phosphorus (Peltzer et al. 2010). There are general patterns in how nutrient limitation shifts from primary succession to very old ecosystems that can aid interpretation of paleorecords through time in different landscapes. Nutrient limitation is strong in early stages of soil development, and is most commonly driven by N as it slowly accumulates from

393	primary atmospheric sources. Nutrient limitation decreases in intermediate stages
394	as N accumulates and rock-derived nutrients (e.g., phosphorus, calcium) are
395	released into available forms by weathering. Nutrient limitation intensifies in late
396	stages of soil development due to depletion of rock-derived nutrients on
397	geologically old substrates (Chadwick et al. 1999), shift of rooting zone from mineral
398	to organic soil horizons (Bormann et al. 1995), or sequestration of accumulated N in
399	unavailable organic forms (Wardle et al. 2012). The sensitivity of ecosystem N
400	cycling and loss to disturbance also changes over geological time. At the young and
401	old ends of the spectrum, N cycling should show weak sensitivity to disturbance,
402	and intermediate-aged ecosystems should exhibit strong sensitivity. In early soil
403	development, intense N limitation prevents strong changes in N cycling with
404	disturbance. In intermediate stages of soil development, high rates of biotic N
405	cycling elicit strong responses of N biogeochemistry to disturbance, with large
406	potential for nutrient losses. Late in soil development, nutrient limitation by rock-
407	derived nutrients (phosphorus, calcium) intensifies, attenuating the response of N
408	cycling as N limitation is relaxed, causing weak response of N cycling and loss to
409	disturbance. Grounding novel geochemical proxies from sediment records in
410	biogeochemical theory is likely to improve interpretation of paleorecords in an
411	ecosystem context.

Hydrology

414 Many studies have documented hydrologic responses to disturbance, and these
415 provide an opportunity to consider ecosystem resilience to a range of disturbance
416 types. A foundational paradigm is that removal of plant biomass, such as in clear-

417	cutting experiments, would increase water available for stream discharge (Bormann
418	and Likens 1979). In addition, a variety of ecosystem responses have been observed
419	following disturbances, including changes in water balance (runoff, recharge,
420	evaporation), chemistry (major ions, nutrients, organic C), and sediment yield.
421	Additionally, responses may vary from regime shifts to no detectable change
422	depending on the combination of disturbance magnitude and the resilience of the
423	ecosystem (figure 6). The total disturbance magnitude could represent the effects of
424	a single event, but may also indicate the combined consequences of repeated
425	disturbances. There are highly-variable observed examples of responses ranging
426	from regime change to no response across the spectrum of total magnitude with the
427	character of the response.
428	Land cover change in different ecosystems, at different times and rates, reveals the
429	influence of ecosystem resilience and resistance on the scale and style of responses
430	to similar magnitude disturbances (figure 6). For example, at Hubbard Brook, New
431	Hampshire, ecosystem resilience of a mesic forest has led to observed recovery of
432	hydrologic behavior in a clear-cut watershed within decades (Bormann and Likens
433	1979), but paleoecological studies demonstrate that land clearance can produce
434	persistent change in less resilient ecosystems such as pine barrens (Lytle 2005) or
435	in combination with other long-term influences (like climate change) that weaken
436	ecosystem resistance and reduce the range of resilience. However, disturbance
437	severity can also be important for shaping the type of hydrologic response. For
438	example, forest thinning may produce a smaller change than total removal of trees.

2 3 4	439	The importance of small disturbances for producing regime changes and severe
5 6 7	440	responses in systems close to thresholds can be demonstrated by permafrost melt
, 8 9	441	events (Smith et al. 2004) and changes in snowpack-drive stream discharge, where
10 11 12	442	small warming can cross the melting threshold and cause a regime change in system
13 14	443	state and behavior. Consequently, some ecosystems have the potential to jump
15 16	444	permanently from one state to another (e.g., where warming is small, but persistent)
17 18 19	445	even in the face of weak perturbations, while others have the capacity to return to
20 21	446	their initial state after some period of recovery (e.g., where only a temporary change
22 23 24	447	in watershed functioning occurred).
25 26	448	The frequency of a type of event in a system may predict the magnitude and nature
27 28 29	449	of the hydrologic response. Volcanism provides an example of an infrequent event,
30 31	450	and an ecosystem-independent disturbance agent. With no ecosystem feedbacks on
32 33 34	451	disturbance magnitude or frequency, paleo-ecosystem studies reveal otherwise
35 36	452	unknown and infrequent events that cannot be studied on short time frames. For
37 38 20	453	example, the eruption of Mount St. Helens, Washington in 1980 A.D. had immediate
39 40 41	454	and well-documented effects on local hydrology, such as the loss of the mountain
42 43	455	glaciers (figure 6). Similarly, an ancient eruption in the same region—the eruption
44 45 46	456	of Mount Mazama in 7600 cal yBP—illustrates how volcanism can have far-reaching
47 48	457	impacts. The Mazama ash more than doubled the water-holding capacity of soils
49 50 51	458	which resulted in major vegetation changes especially in dry sites (Gavin et al.
52 53	459	2001). Post-eruption regime shifts in lake level and diatom communities indicate
54 55 56	460	hydrologic changes well to the east in Montana (Stone and Fritz 2006).

1
2
3
4
5
6
7
8
a
9 10
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
20
21
21
3Z
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
50
54
55
50
5/
58
59
60

461	Likewise, paleo-ecosystem studies reveal that many other historic observations of
462	apparently large or severe disturbances are not unprecedented when viewed in a
463	long-term context. Recent drought, fire and hurricane events have been placed in
464	the context of many past events, which show that large infrequent disturbances
465	(Foster et al. 1998) are poorly-understood without data representing a long time
466	span (Laird et al. 2003). Disturbances that may initially be considered "catastrophic"
467	such as the 1988 fires in Yellowstone National Park may be viewed as "natural"
468	when compared with the paleorecord (Romme et al. 2011), while others such as the
469	2007 Anaktuvuk River Fire in Alaskan tundra may be considered unprecedented
470	over the late Holocene (Hu et al. 2010).
471	Hydrological responses can also have implications for other biogeochemical cycles
472	in a fashion that depends upon the character of the response. For example, severe
473	droughts in the Great Plains have lowered lake levels and limited surface water
474	supply both historically and during the past several millennia (Laird et al. 2003).
475	One consequence of the most severe droughts during the mid-Holocene was to
476	concentrate migrating birds at the few remaining lakes in the Great Plains, and
477	create localized hot spots of nutrient delivery, but because these hydrologic systems
478	are highly resilient, the end of the droughts led to a recovery of earlier broad
479	distribution of bird stop-over locations and nutrient loading (Donovan and Grimm
480	2007). We suspect that other interactions among systems (e.g., hydrology, fauna, N)
481	and their levels of resilience will produce similarly contingent effects on ecosystem
482	characteristics and function.

2		
3 4	483	On the other hand, hydrologic case studies also reveal important absence of
5 6 7	484	responses. This resilience was also seen in long-term ecosystem response to
8 9	485	disturbance for C and N cycling. In particular, multiple studies have sought to
10 11	486	document significant changes in water chemistry in lakes following fires in their
12 13 14	487	watersheds and have found little to no change. The absence of such a response has
15 16	488	been observed both historically and in response to repeated fires in the same
17 18 19	489	watershed using paleo-ecosystem techniques (Marchand et al. 2009). The absence
20 21	490	of expected changes illustrates important gaps in our current understanding of
22 23 24	491	ecosystem response to disturbance.
24 25		
26	492	
27	493	Research priorities
28		
29 30	494	We identify a number of theoretical and practical approaches to strengthen the
31 32	495	insights of ecosystem response to disturbance by linking information across
33 34 35	496	multiple temporal scales. First, the paleorecord is replete with examples of
36 37	497	unexpected complacency to relatively large magnitude disturbance events
38 39	498	(DiMichele et al. 2004). The disturbances can be reconstructed, but a focus on the
40 41 42	499	drivers that allow ecological resilience or persistence is needed (Swetnam and
43 44	500	Betancourt 1998). A general framework for identifying ecosystem characteristics
45 46 47	501	that confer resilience has been difficult to achieve. Disturbance experiments may
48 49	502	provide a way forward. For example, a large-scale girdling experiment in a
50 51	503	secondary temperate forest identified the role of residual vegetation in retaining N
52 53 54	504	and sustaining ecosystem C accumulation during a period when 20-50% of the
55 56 57	505	existing trees were experimentally killed (Nave et al. 2011). Manipulations of fire
58		

Page 23 of 40

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
აა 24	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	

506	severity can provide insights regarding the magnitude of C loss under different fire
507	regimes and the mechanisms influencing post-fire C accumulation in both
508	vegetation and soils. Manipulations of fire frequency can provide insights into
509	resilience and resistance of different vegetation types to disturbance regimes
510	(Briggs et al. 2005). The results of these types of experiments will add short-term
511	mechanistic-oriented detail to long-term pattern-oriented records of past
512	disturbance, providing a powerful joint perspective to understand resilience.
513	Second, it is clear that disturbances of varying magnitude and type interact at
514	the landscape scale. These interactions have led to the perceived difficulty of
515	predicting multiple successional pathways after disturbance. Directly studying these
516	interactions can increase our predictive power about post-disturbance
517	biogeochemical trajectories. For example, the interactions of sequential
518	disturbances from logging, fire, and wind disturbance in mixed conifer forests in
519	Colorado were non-additive (Buma and Wessman 2011). Surprisingly, disturbance
520	agent, combinations, and resilience mechanisms were more important than number
521	of disturbances. Because multiple disturbance events and agents can be identified in
522	paleorecords, this approach may provide further insights about the interactive
523	nature of disturbance events if explicitly studied. A better understanding of how
524	different disturbances are represented in the paleorecord is required. While fires
525	are well-studied and well-represented in sedimentary charcoal and tree rings, other
526	important disturbance agents (e.g. insect outbreaks, ice storms, windthrow) are
527	often less clear, despite having implications for biogeochemical cycles. Identifying
528	the mechanism of disturbance instead of the disturbance type or agent, such as in

529 the conceptual framework described by Peters et al. (2011) is likely to improve530 predictability of biogeochemical response.

Several practical avenues can speed the integration of neo and paleo timescales and concepts. A central one is to develop techniques to make the sediment record more informative of terrestrial ecosystem dynamics. We identify three main technical developments in paleoecology as high research priorities : 1) developing improved quantitative proxies of NPP. 2) developing proxies of terrestrial nutrient cycling, and 3) assessing the age and structure of ecosystem C stocks from sedimentary records. There are significant challenges to each of these research areas. But there are also recent advances such as spatially-explicit reconstructions of terrestrial C budgets from pollen records (Boyle et al. 2011). compound-specific N isotopic analysis in sediments (Enders et al. 2008), and rapid high-resolution quantification of sedimentary elemental concentrations (Kylander et al. 2011). Another key is to routinely conduct multiproxy analyses, especially identifying the source of sedimentary organic matter, and the application of whole-lake flux measurements as derived from multiple sediment cores (Engstrom and Rose 2013). Finally, high-resolution temporal sampling across disturbance events, such that disturbance and biogeochemical responses are measured in same record, would be useful.

The primary challenge is to bridge the spatial and temporal scales of neo-and
paleo-studies, to produce a more consistent, synthetic understanding of
biogeochemical processes than possible from either perspective alone. We identified

551 centennial timescales as an area with the least information on post-disturbance

biogeochemical processes, yet critical for understanding ecosystem function during
ongoing climate change. Centennial timescales are also where some paleorecords
lack sufficient resolution to capture dynamics associated with several disturbance
intervals.

The conceptual models developed in this manuscript are largely aspatial, but could be made spatial. There are also particular places and spatial scales that may be most synergistic for linking across timescales. For example, the Arctic tundra is a region already experiencing the effects of global change, including altered fire regimes and permafrost melting (Hu et al. 2010). This region is especially promising as a test area for this new synthetic approach to paleoecosystem ecology, because it contains both detailed long-term ecosystem measurements and many sedimentary records of climate, vegetation, and geochemical change.

Conclusions

The unification of long-term ecological monitoring data, chronosequences, and
 paleorecords provides exciting opportunities for exploring the interactions of
 multiple disturbance events against a changing background of climate and
 disturbance frequency.

- 571 2. The biogeochemical consequences of a single disturbance are often short-lived,
 572 with biogeochemical parameters returning to pre-disturbance conditions on the
 573 same timescale as the dominant vegetation type. Thus, biogeochemical cycles in
- 574 many ecosystems can be considered resilient to disturbance. The true impact of

2	
2	
3	
4	
5	
6	
7	
<i>'</i>	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
11	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
21	
28	
29	
30	
31	
22	
32	
33	
34	
35	
36	
27	
31	
38	
39	
40	
<u>1</u>	
40	
42	
43	
44	
45	
46	
40	
41	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
50	
57	
58	
59	
60	
00	

575		disturbances may come through changing disturbance regimes, which requires
576		the context of long timescales.
577	3.	Centennial and multi-centennial timescales are critical timeframes for improving
578		our understanding of the biogeochemical consequences of disturbances. This
579		scale is when the understanding of a single disturbance event from a
580		chronosequence begins to break down, while the temporal resolution of
581		paleorecords is usually insufficient to capture biogeochemical processes through
582		multiple disturbance events.
583	4.	Developing proxy records of ecosystem characteristics is a priority for the
584		paleoecological community. Three proxies would be particularly useful: NPP,
585		terrestrial nutrient dynamics, and age of ecosystem C.
586	5.	The existence of unexpected post-disturbance trajectories such as multiple
587		successional pathways continues to challenge ecosystem ecologists and poses a
588		particular problem for the next generation of Earth System Models. The
589		empirical and conceptual perspectives described here help move us closer to the
590		goal of increased predictability of post-disturbance trajectories, including
591		incorporating the role of disturbance agent, severity, and their interactions over
592		centennial to millennial timescales.
593 594	Ac	cknowledgements
595	W	e thank the National Science Foundation (DEB-1144879) for funding the PROBE
596	(P	aleo Reconstructions Of Biogeochemical Environments) workshop where these
597	ide	eas were developed. Any use of trade names is for descriptive purposes only and

1 2		
3 4	598	does not imply endorsement by the U.S. Government. We thank J. Craine and F.
5 6 7	599	Swanson for helpful discussion.
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 31 2 3 3 4 5 6 7 8 9 0 31 3 3 3 4 5 6 7 8 9 0 31 3 3 3 4 5 6 7 8 9 0 31 2 3 3 4 5 6 7 8 9 0 31 2 3 3 4 5 6 7 8 9 0 31 2 3 3 4 5 6 7 8 9 0 31 2 3 3 4 5 6 7 8 9 0 3 1 2 3 3 4 5 6 7 8 9 0 3 1 2 3 3 4 5 6 7 8 9 0 3 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 0 1 2 3 3 3 4 5 5 6 7 8 9 0 1 2 3 3 3 4 5 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 0 4 5 3 5 7 8 9 0 4 5 7 8 9 0 4 5 7 8 9 0 3 7 8 9 0 4 5 7 8 9 0 3 3 3 3 3 3 3 5 3 5 7 8 9 0 4 5 7 8 9 4 5 3 7 8 9 0 8 9 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 3 5 7 8 9 0 4 5 8 9 0 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 8 9	598 599 600 601	does not imply endorsement by the U.S. Government. We thank J. Craine and F. Swanson for helpful discussion.
46 47		
48 49 50 51 52 53 54 55		
56 57 58 59		
60		26 http://mc.manuscriptcentral.com/ucpress-bio

2		
3	602	
4 5	603	Table 1. Types of disturbances and how they are reconstructed. The key
6	604	contribution of paleoecology is being able to reconstruct enough disturbance events
7	605	to characterize disturbance regimes. These are often summarized over a given
8	606	spatial and temporal extent, and expressed as a distribution or summary statistics
9 10	607	[e.g, mean fire return interval (FRI)]. Additional disturbance properties include
10	608	spatial extent, timing, and interactions (Pickett and White 1985).
12	609	

disturbance agent	severity	frequency	technique
fire	low	high	fire scars recorded in wood
	high	low	tree establishment dates,
			sedimentary charcoal
insects	high	low	tree demography, insect fossils
			in sediment
wind	high	low	downed wood, clastic material
			in sediments
drought	variable	variable	tree rings, long-term
			instrumental records, lake
			level, lake salinity
tree removal	high	low	pollen preserved in sediment,
(clearance,			sedimentation rates, tree
deforestation)			demography
mass movement	variable	variable	sedimentation rate

1		
2		
3 ⊿	614	
5	615	Figure 1. Paleoecological studies capture the long-term disturbance histories, state
6	616	changes in vegetation, and coarse measures of carbon stores. Multiproxy
7	617	sedimentary data from Yahoo Lake, Washington, USA show how climate affects
8	618	biomass and how fire mediates tree species composition during periods of rapid
9	619	climate change (Gavin et al. in press. 2013) (a) Organic content (loss-on-ignition
10	620	I (I) and climate as estimated by sea surface temperature (SST) in the NF Pacific
11	620	Ocean (b) Macrosconic charceal stratigraphy quantified at 1 cm intervals. Pod lines
12	(22	in digete interpreted fine events near the lake (a) Dellen nergent (colored even) and
14	622	indicate interpreted fire events hear the lake. (c) Polien percent (colored areas) and
15	623	needle macrofossil concentration (top axis, needle equivalents per 5 cubic
16	624	centimeters of sediment) for three coniferous tree species.
17	625	
18	626	Figure 2. Post-fire aboveground carbon (C) accumulation in forests in Alaska. Post-
19	627	fire vegetation type determines the rate of C accumulation in living aboveground
20	628	biomass.
21	629	
22	630	Figure 3. Conceptual diagram of long-term ecosystem carbon state in the context of
23	631	disturbance regimes. (a) how this would be recorded in the charcoal and pollen
25	632	naleorecords of a sediment core (b) the carbon storage in the ecosystem and (c) the
26	633	underlying processes of a shift in NECB including state changes in vegetation and
27	624	disturbance regime
28	034	disturbance regime.
29	635	
30	636	Figure 4. A well-replicated post-disturbance chronosequence of lodgepole pine
31	637	(Pinus contorta var. latifolia) forests in the western U.S. shows equilibration of
२ २२	638	ecosystem nitrogen (N) pools but redistribution of ecosystem N among pools after
34	639	disturbance (Smithwick et al. 2009).
35	640	
36	641	Figure 5. Conceptual diagram showing response of available stocks of growth-
37	642	limiting nutrients to disturbance. (a) a single disturbance event may serve to
38	643	increase, decrease, or not affect net stocks of a nutrient depending on post-
39	644	disturbance accumulation and loss rates (h) over time a disturbance regime may
40	645	gradually increase or decrease nutrient availability a phenomenon we term the
41 42	646	"biogaachamical staircasa" (c) over langer timescales access toms often experience
43	647	the enset of phoephorus limitation and reduced not primary productivity lineum as
44	047	the onset of phosphol us initiation and feduced net printary productivity known as
45	648	retrogression (reproduced from Peitzer 2010). In the oldest stages of ecosystems,
46	649	disturbances can serve to replenish nutrients.
47	650	
48	651	Figure 6. Conceptual diagram of four types of hydrologic responses to disturbances,
49 50	652	encapsulating the range of responses demonstrated in various paleorecords,
50 51	653	observations, and modern experiments. Red colors indicate a response of water
52	654	quality, blue colors indicate a response of water quantity.
53	655	• •
54	656	
55	657	
56	658	
57	620	
58	039	
59 60		
00		

660	
661	Box 1. Background on disturbance ecology.
662	

The theoretical basis for linking biogeochemistry with **disturbance ecology** was developed in the 1970s and largely focused on impacts from, and recovery to, steady-state or equilibrium conditions (Vitousek and Reiners 1975). Newer conceptualizations of complex adaptive systems and resilience in ecological systems now highlight the important role of interactions, system feedbacks, and landscape contingencies when forecasting how disturbances affect ecosystems. Interactions between biogeochemical cycles and vegetation can either reinforce current states or result in shifts to alternate states, depending on the magnitude and timing of the interactions. Importantly, potential shifts in system states can be caused by the disturbance itself, as well as centuries to millennia of vegetation-soil feedbacks that constrain, mediate, or amplify ecological responses (Turner et al. 1993).

The concept of **biogeochemical resilience** incorporates the idea that biogeochemical characteristics are spatially differentiated prior to disturbance, are sensitive to the disturbance event itself, and are coupled to vegetation response patterns and rates (Smithwick 2011). Classically, ecological resilience is focused on organisms, while biogeochemical resilience is focused on pool sizes and input/output rates. Over long spatial and temporal scales, shifts in biogeochemistry influence vegetation response trajectories and *vice versa*. Understanding long-term ecosystem resilience to disturbance requires a full characterization of disturbance regimes—the agent or mechanism of disturbance, as well as the magnitude, severity, and return interval (Table 1, Peters et al. 2011)— alongside an understanding of elemental pools and flows.

666 Literature cited

007	
668	Biondi, F. and S. Strachan. 2012. Dendrohydrology in 2050: challenges and
669	opportunities. <i>in</i> W. Grayman, P. Loucks, and L. Saito, editors. Toward a
670	sustainable water future: visions for 2050. American Society of Civil
671	Engineers (ASCE).
672	Boerner, R. E. J. 1982. Fire and nutrient cycling in temperate ecosystems. Bioscience

- :187-192.
- 674 Bond, W. J., F. I. Woodward, and G. F. Midgley. 2005. The global distribution of 675 ecosystems in a world without fire. New Phytologist **165**:525-537.

1		
2		
4	676	Bormann, B. T., H. Spaltenstein, M. H. McClellan, F. C. Ugolini, K. Cromack, and S. M.
5	677	Nay. 1995. Rapid soil development after windthrow disturbance in pristine
6	678	forests. Journal of Ecology 83 :747-757.
7	679	Bormann, F. H. and G. E. Likens. 1979. Pattern and Process in a Forested Ecosystem.
8	680	Springer-Verlag, New York.
9	681	Bowman, D. M. J. S., J. Balch, P. Artaxo, W. J. Bond, M. A. Cochrane, C. M. D'Antonio, R.
10	682	DeFries, F. H. Johnston, J. E. Keeley, M. A. Krawchuk, C. A. Kull, M. Mack, M. A.
12	683	Moritz, S. Pyne, C. J. Roos, A. C. Scott, N. S. Sodhi, and T. W. Swetnam, 2011.
13	684	The human dimension of fire regimes on Earth Journal of Biogeography
14	685	38 .7773 -7 736
15	686	Boyle J F M J Gaillard J O Kaplan and J A Dearing 2011 Modelling prehistoric
16	687	land use and carbon budgets: A critical review Holocene 21 :715-722
17	6007	Priggs I M A K Knapp I M Plair I I Heisler C A Hesh M S Lott and I K
10	000 600	MaCarron 2005 An account in transition Courses and concequences of the
20	009	McCarron. 2005. An ecosystem in transition. Causes and consequences of the
21	690	conversion of mesic grassiand to shrubland. Bioscience 55:243-254.
22	691	Buma, B. and C. A. Wessman. 2011. Disturbance interactions can impact resilience
23	692	mechanisms of forests. Ecosphere 2 :Art64-Art64.
24	693	Chadwick, O. A., L. A. Derry, P. M. Vitousek, B. J. Huebert, and L. O. Hedin. 1999.
25	694	Changing sources of nutrients during four million years of ecosystem
20 27	695	development. Nature 397 :491-497.
28	696	Chapin, F. S., III, G. M. Woodwell, J. <mark>T.</mark> Randerson, E. B. Rastetter, G. M. Lovett, D. D.
29	697	Baldocchi, D. A. Clark, M. E. Harmon, D. S. Schimel, R. Valentini, C. Wirth, J. D.
30	698	Aber, J. J. Cole, M. L. Goulden, J. W. Harden, M. Heimann, R. W. Howarth, P. A.
31	699	Matson, A. D. McGuire, J. M. Melillo, H. A. Mooney, J. C. Neff, R. A. Houghton, M.
32	700	L. Pace, M. G. Ryan, S. W. Running, O. E. Sala, W. H. Schlesinger, and E. D.
33	701	Schulze. 2006. Reconciling carbon-cycle concepts, terminology, and methods.
35	702	Ecosystems 9 :1041-1050.
36	703	Cook, E. R., C. A. Woodhouse, C. M. Eakin, D. M. Meko, and D. W. Stahle, 2004, Long-
37	704	term aridity changes in the western United States, Science 306 :1015-1018.
38	705	Dean W E and E Gorham 1998 Magnitude and significance of carbon burial in
39	706	lakes reservoirs and neatlands Geology 26 :535-538
40	707	Dearing I A X Yang X Dong F 7hang X Chen P C Langdon K 7hang W 7hang
41 42	707	and T. P. Dawson, 2012. Extending the timescale and range of ecosystem
43	700	and 1.1. Dawson. 2012. Extending the timescale and range of ecosystem
44	709	Vangtage hasin. Dragoodings of the National Academy of Geienees of the United
45	710	States of America 100 E1111 E1120
46	/11	States of America 109 :E1111-E1120.
47	/12	DIMICNEIE, W. A., A. K. Benrensmeyer, T. D. OISZEWSKI, C. C. Labandeira, J. M. Pandoin,
48	713	S. L. Wing, and R. Bobe. 2004. Long-term stasis in ecological assemblages:
49 50	714	Evidence from the fossil record. Annual Review of Ecology Evolution and
51	715	Systematics 35:285-322.
52	716	Donovan, J. J. and E. C. Grimm. 2007. Episodic struvite deposits in a Northern Great
53	717	Plains flyway lake: indicators of mid-Holocene drought? Holocene 17 :1155-
54	718	1169.
55 56	719	Enders, S. K., M. Pagani, S. Pantoja, J. S. Baron, A. P. Wolfe, N. Pedentchouk, and L.
50 57	720	Nunez. 2008. Compound-specific stable isotopes of organic compounds from
58	721	lake sediments track recent environmental changes in an alpine ecosystem,
59		
60		

3 4	722	Rocky Mountain National Park, Colorado. Limnology and Oceanography
5	723	53 :1468-1478.
6	724	Engstrom, D. R., S. C. Fritz, J. E. Almendinger, and S. Juggins. 2000. Chemical and
7	725	biological trends during lake evolution in recently deglaciated terrain. Nature
8	726	408 :161-166.
9	727	Engstrom, D. R. and N. L. Rose. 2013. A whole-basin mass-balance approach to
10	728	paleolimnology. Journal of Palaeolimnology.
12	729	Falk, D. A., E. K. Heverdahl, P. M. Brown, C. Farris, P. Z. Fule, D. McKenzie, T. W.
13	730	Swetnam, A. H. Taylor, and M. L. Van Horne, 2011, Multi-scale controls of
14	731	historical forest-fire regimes: new insights from fire-scar networks. Frontiers
15	732	in Ecology and the Environment 9 :446-454.
16 17	733	Foster D R D H Knight and I F Franklin 1998 Landscape patterns and legacies
17	734	resulting from large infrequent forest disturbances. Ecosystems 1:497-510
10	735	Cavin D C L B Brubaker and D N Creenwald In press 2013 Postglacial climate
20	736	and fire-mediated vegetation change on the western Olympic Peninsula
21	730	Washington, Ecological Monographs
22	737	Cavin D.C. D. Hallett, F.C. Hu, K. Lortzman, S. I. Drichard, K. I. Droum, I.A. Lunch, D.
23	/ 30	Gavili, D. G., D. Hallett, F. S. Hu, K. Leitzilian, S. J. Prichard, K. J. Brown, J. A. Lynch, P.
24 25	739	Bartieni, and D. L. Peterson. 2007. Forest fire and climate change: insights
20	740	from sediment charcoal records. Frontiers in Ecology and the Environment
27	/41	5 :499-506.
28	742	Gavin, D. G., J. S. McLachlan, L. Brubaker, and K. A. Young. 2001. Postglacial history of
29	743	subalpine forests, Olympic Peninsula, Washington, USA. The Holocene
30	744	11 :177-188.
31	745	Hessl, A. E. 2011. Pathways for climate change effects on fire: Models, data, and
ऽ∠ 33	746	uncertainties. Progress in Physical Geography 35 :393-407.
34	747	Higuera, P. E., D. G. Gavin, P. J. Bartlein, and D. J. Hallett. 2010. Peak detection in
35	748	sediment-charcoal records: impacts of alternative data analysis methods on
36	749	fire-history interpretations. International Journal of Wildland Fire 19 :669-
37	750	1014.
38	751	Higuera, P. E., C. Whitlock, and J. A. Gage. 2011. Linking tree-ring and sediment-
39 40	752	charcoal records to reconstruct fire occurrence and area burned in subalpine
41	753	forests of Yellowstone National Park, USA. Holocene 21 :327-341.
42	754	Hrinkevich, K. and K. J. Lewis. 2011. Northern range limit mountain pine beetle
43	755	outbreak dynamics in mixed sub-boreal pine forests of British Columbia.
44	756	Ecosphere 2 :116.
45	757	Hu, F. S., P. E. Higuera, I. E. Walsh, W. L. Chapman, P. A. Duffy, L. B. Brubaker, and M.
40 47	758	L Chinman 2010 Tundra burning in Alaska: linkages to climatic change and
48	759	sea-ice retreat Journal of Geophysical Research-Biogeosciences 115 -G04002
49	760	Knann A K I M Briggs S I Collins S B Archer M S Bret-Harte B F Fwers D P
50	761	Peters D R Voung C R Shaver F Pendall and M R Cleary 2008 Shruh
51	762	oncroachmont in North Amorican grasslands: shifts in growth form
52	762	dominance ranidly alters control of accepted an carbon inputs. Clobal Change
53 54	705	Piology 14,615,622
55	704 765	DIVIUSY 14:013-023. Kulandar M E I Amnal D Wahlfarth and D Varas 2011 Useh resolution V
56	705	Rylanuer, M. E., L. Amper, D. Womarun, and D. Veres. 2011. High-resolution X-ray
57	/00	nuorescence core scanning analysis of Les Echets (France) sedimentary
58		
59 60		
00		

1		
2		
4	767	sequence: new insights from chemical proxies. Journal of Quaternary Science
5	768	$\mathbf{Z6}:109-117.$
6 7	/69	Laird, K. R., B. F. Cumming, S. Wunsam, J. A. Rusak, R. J. Oglesby, S. C. Fritz, and P. R.
7 8	//0	Leavitt. 2003. Lake sediments record large-scale shifts in moisture regimes
9	//1	across the northern prairies of North America during the past two millennia.
10	772	Proceedings of the National Academy of Sciences of the United States of
11	773	America $100:2483-2488$.
12	774	Laliberte, E., B. L. Turner, T. Costes, S. J. Pearse, K. H. Wyrwoll, G. Zemunik, and H.
13	775	Lambers. 2012. Experimental assessment of nutrient limitation along a 2-
14	776	million-year dune chronosequence in the south-western Australia
16	777	biodiversity hotspot. Journal of Ecology 100 :631-642.
17	778	Lytle, D. E. 2005. Palaeoecological evidence of state shifts between forest and
18	779	barrens on a Michigan sand plain, USA. Holocene 15 :821-836.
19	780	Mack, M. C., M. S. Bret-Harte, T. N. Hollingsworth, R. R. Jandt, E. A. G. Schuur, G. R.
20 21	781	Shaver, and D. L. Verbyla. 2011. Carbon loss from an unprecedented Arctic
22	782	tundra wildfire. Nature 475 :489-492.
23	783	Marchand, D., Y. T. Prairie, and P. A. del Giorgio. 2009. Linking forest fires to lake
24	784	metabolism and carbon dioxide emissions in the boreal region of Northern
25	785	Quebec. Global Change Biology 15 :2861-2873.
20 27	786	Marlon, J. R., P. J. Bartlein, D. G. Gavin, C. J. Long, R. S. Anderson, C. E. Briles, K. J.
28	787	Brown, D. Colombaroli, D. J. <mark>Halle</mark> tt, M. J. Power, E. A. Scharf, and M. K. Walsh.
29	788	2012. Long-term perspective on wildfires in the western USA. Proceedings of
30	789	the National Academy of Sciences of the United States of America 109 :E535-
31	790	E543.
32	791	Milner, A. M., C. L. Fastie, I. Chapin F S, D. R. Engstrom, and L. C. Sharman. 2007.
33 34	792	Interactions and linkages among ecosystems during landscape evolution.
35	793	Bioscience 57 :237-247.
36	794	Mitton, J. B. and S. M. Ferrenberg. 2012. Mountain Pine Beetle Develops an
37	795	Unprecedented Summer Generation in Response to Climate Warming.
38	796	American Naturalist 179 :E163-E171.
39 40	797	Morris, J. L. and A. R. Brunelle. 2012. Pollen accumulation in lake sediments during
41	798	historical spruce beetle disturbances in subalpine forests of southern Utah,
42	799	USA. The Holocene.
43	800	Nave, L. E., C. M. Gough, K. D. Maurer, G. Bohrer, B. S. Hardiman, J. Le Moine, A. B.
44 45	801	Munoz, K. J. Nadelhoffer, J. P. Sparks, B. D. Strahm, C. S. Vogel, and P. S. Curtis.
45 46	802	2011. Disturbance and the resilience of coupled carbon and nitrogen cycling
47	803	in a north temperate forest. Journal of Geophysical Research-Biogeosciences
48	804	116.
49	805	Peltzer, D. A., D. A. Wardle, V. J. Allison, W. T. Baisden, R. D. Bardgett, O. A. Chadwick,
50 51	806	L. M. Condron, R. L. Parfitt, S. Porder, S. J. Richardson, B. L. Turner, P. M.
51 52	807	Vitousek, J. Walker, and L. R. Walker. 2010. Understanding ecosystem
53	808	retrogression. Ecological Monographs 80 :509-529.
54	809	Perakis, S. S., E. R. Sinkhorn, and J. E. Compton. 2011. delta(15)N constraints on
55	810	long-term nitrogen balances in temperate forests. Oecologia 167 :793-807.
56		
57 58		
59		
60		

1		
2		
3	811	Peters, D. P. C., A. F. Lugo, F. Stuart Chapin, III, S. T. A. Pickett, M. Duniway, A. V.
4	812	Rocha F I Swanson C Laney and Llones 2011 Cross-system comparisons
5	Q12	alucidate disturbance complexities and generalities. Ecosphere 2 :art81
0 7	013	Dislett C.T. A. and D.C. White 1005 The acalemy of natural disturbance and natah
7 8	014	Pickett, S. T. A. and P. S. White. 1985. The ecology of natural disturbance and patch
9	815	dynamics. Academic Press, New York, NY.
10	816	Porder, S., D. A. Clark, and P. M. Vitousek. 2006. Persistence of rock-derived
11	817	nutrients in the wet tropical forests of La Selva, Costa Rica. Ecology 87 :594-
12	818	602.
13	819	Raffa, K. F., B. H. Aukema, B. J. Bentz, A. L. Carroll, J. A. Hicke, M. G. Turner, and W. H.
14	820	Romme. 2008. Cross-scale drivers of natural disturbances prone to
15	821	anthropogenic amplification: the dynamics of bark beetle eruptions.
16	822	Bioscience 58 :501-517
17	823	Rhoades C C I H McCutchan I A Cooner D Clow T M Detmer I S Briggs I D
19	023 Q24	Stodnick T T Voblon P M Ertz C E Likons and W M Lowis 2012
20	024	Die zoo ek emistere of hoothe billed formate semilairing a mode witwate ware and
21	825	Biogeochemistry of beetle-killed forests: explaining a weak nitrate response.
22	826	Proceedings of the National Academy of Science.
23	827	Romme, W. H., M. S. Boyce, R. Gresswell, E. H. Merrill, G. W. Minshall, C. Whitlock,
24	828	and M. G. Turner. 2011. Twenty Years After the 1988 Yellowstone Fires:
25	829	Lessons About Disturbance and Ecosystems. Ecosystems 14 :1196-1215.
20 27	830	Seidl, R., MJ. Schelhaas, and M. J. Lexer. 2011. Unraveling the drivers of intensifying
28	831	forest disturbance regimes in Europe. Global Change Biology 17 :2842-2852.
29	832	Sherriff, R. L., E. E. Berg, and A. E. Miller. 2011. Climate variability and spruce beetle
30	833	(Dendroctonus rufipennis) outbreaks in south-central and southwest Alaska.
31	834	Ecology 92 :1459-1470.
32	835	Smith, L. C., G. M. MacDonald, A. A. Velichko, D. W. Beilman, O. K. Borisova, K. E. Frey,
33	836	K. V. Kremenetski, and Y. Sheng, 2004. Siberian peatlands a net carbon sink
34	837	and global methane source since the early Holocene. Science 303 :353-356
36	838	Smithwick F A H D M Kashian M C Ryan and M C Turner 2009 Long-Term
37	030	nitrogon storage and soil nitrogon availability in post fire lodgenale nine
38	039	inclogen storage and son inclogen availability in post-ine lougepole pille
39	840	ecosystems. Ecosystems 12:792-806.
40	841	Smol, J. P., editor. 2001. Tracking environmental change using lake sediments:
41	842	physical and geochemical methods. Kluwer Press, Dordrecht, Netherlands.
42	843	Stine, S. 1994. Extreme and persistent drought in California and Patagonia during
43	844	Medieval time Nature 369 :546-549.
44 45	845	Stone, J. R. and S. C. Fritz. 2006. Multidecadal drought and Holocene climate
46	846	instability in the Rocky Mountains. Geology 34 :409-412.
47	847	Swetnam, T. W. and J. L. Betancourt. 1998. Mesoscale disturbance and ecological
48	848	response to decadal climatic variability in the American Southwest, Journal
49	849	of Climate 11 :3128-3147.
50	850	Throon H L and S R Archer 2008 Shrub (Prosonis velutina) encroachment in a
51	851	semidesert grassland: snatial-temporal changes in soil organic carbon and
52 52	051 QE7	nitrogen nools. Clobal Change Riology 1 4:2420-2421
53 54	052 052	Turner M C 2010 Dicturbance and landscape dynamics in a changing world
55	000	Furlier, M. G. 2010. Distuibance and fandscape dynamics in a changing World.
56	854	ECOlogy 91 :2833-2849.
57		
58		
59		
60		

 Turner, M. G., W. H. Romme, R. H. Gardner, R. V. Oneill, and T. K. Kratz. 1993. A revised concept of landscape equilibrium: disturbance and stability on scaled landscapes. Landscape Ecology 8:213-227. Veblen, T. T., K. S. Hadley, E. M. Nel, T. Kitzberger, M. Reid, and R. Villalba. 1994. Disturbance regime and disturbance interactions in a Rocky Mountain sub- alpine forest. Journal of Ecology 82:125-135. Vitousek, P. M. and W. A. Reiners. 1975. Ecosystem succession and nutrient retention - hypothesis. Bioscience 25:376-381. Wardle, D. A., M. Jonsson, S. Bansal, R. D. Bardgett, M. J. Gundale, and D. B. Metcalfe. 2012. Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. Journal of Ecology 100:16-30. Wardle, D. A., L. R. Walker, and R. D. Bardgett. 2004. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509- 513. Williams, J. W., B. Shuman, P. J. Bartlein, N. S. Diffenbaugh, and T. Webb. 2010. Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America. Geology 38:135-138. Willis, K. J., M. B. Araujo, K. D. Bennett, B. Figueroa-Rangel, C. A. Froyd, and N. Myers. 2007. How can knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B-Biological Sciences 362:175-186. Yelenik, S. G., S. S. Perakis, and D. E. Hibbs. 2013. Regional constraints to nitrogen fixation in post-fire forest communities. Ecology 94:739-750.
 Style Stepson Stepson
 856 revised concept of landscape equilibrium: disturbance and stability on scaled landscapes. Landscape Ecology 8:213-227. 858 869 869 869 860 860 861 861 862 863 864 864 865 865 865 866 866 867 867 868 867 869 869 869 867 868 867 868 867 870 869 871 873 873 874 874 873 875 874 875 876 876 876 876 976 976 976 977 974 974 974 975 974 974 974 975 974 974 974 974 975 974 975 974 974 975 <l< td=""></l<>
6 857 landscapes. Landscape Ecology 8:213-227. 7 858 Veblen, T. T., K. S. Hadley, E. M. Nel, T. Kitzberger, M. Reid, and R. Villalba. 1994. 8 Disturbance regime and disturbance interactions in a Rocky Mountain sub- alpine forest. Journal of Ecology 82:125-135. 11 861 Vitousek, P. M. and W. A. Reiners. 1975. Ecosystem succession and nutrient retention - hypothesis. Bioscience 25:376-381. 12 862 2012. Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. Journal of Ecology 100:16-30. 18 867 Wardle, D. A., L. R. Walker, and R. D. Bardgett. 2004. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509- 513. 218 Williams, J. W., B. Shuman, P. J. Bartlein, N. S. Diffenbaugh, and T. Webb. 2010. Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America. Geology 38:135-138. 2874 Willis, K. J., M. B. Araujo, K. D. Bennett, B. Figueroa-Rangel, C. A. Froyd, and N. Myers. 2007. How can knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B-Biological Sciences 362:175-186. 2875 Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B-Biological Sciences 362:175-186. 3881 44 44
 Veblen, T. T., K. S. Hadley, E. M. Nel, T. Kitzberger, M. Reid, and R. Villalba. 1994. Disturbance regime and disturbance interactions in a Rocky Mountain sub- alpine forest. Journal of Ecology 82:125-135. Vitousek, P. M. and W. A. Reiners. 1975. Ecosystem succession and nutrient retention - hypothesis. Bioscience 25:376-381. Wardle, D. A., M. Jonsson, S. Bansal, R. D. Bardgett, M. J. Gundale, and D. B. Metcalfe. 2012. Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. Journal of Ecology 100:16-30. Wardle, D. A., L. R. Walker, and R. D. Bardgett. 2004. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509- 513. Williams, J. W., B. Shuman, P. J. Bartlein, N. S. Diffenbaugh, and T. Webb. 2010. Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America. Geology 38:135-138. Willis, K. J., M. B. Araujo, K. D. Bennett, B. Figueroa-Rangel, C. A. Froyd, and N. Myers. 2007. How can knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B-Biological Sciences 362:175-186. Yelenik, S. G., S. S. Perakis, and D. E. Hibbs. 2013. Regional constraints to nitrogen fixation in post-fire forest communities. Ecology 94:739-750.
 Biturbance regime and disturbance interactions in a Rocky Mountain sub- alpine forest. Journal of Ecology 82:125-135. Vitousek, P. M. and W. A. Reiners. 1975. Ecosystem succession and nutrient retention - hypothesis. Bioscience 25:376-381. Wardle, D. A., M. Jonsson, S. Bansal, R. D. Bardgett, M. J. Gundale, and D. B. Metcalfe. 2012. Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. Journal of Ecology 100:16-30. Wardle, D. A., L. R. Walker, and R. D. Bardgett. 2004. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509- 513. Williams, J. W., B. Shuman, P. J. Bartlein, N. S. Diffenbaugh, and T. Webb. 2010. Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America. Geology 38:135-138. Willis, K. J., M. B. Araujo, K. D. Bennett, B. Figueroa-Rangel, C. A. Froyd, and N. Myers. 2007. How can knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B-Biological Sciences 362:175-186. Yelenik, S. G., S. S. Perakis, and D. E. Hibbs. 2013. Regional constraints to nitrogen fixation in post-fire forest communities. Ecology 94:739-750.
 alpine forest. Journal of Ecology 82:125-135. Vitousek, P. M. and W. A. Reiners. 1975. Ecosystem succession and nutrient retention - hypothesis. Bioscience 25:376-381. Wardle, D. A., M. Jonsson, S. Bansal, R. D. Bardgett, M. J. Gundale, and D. B. Metcalfe. 2012. Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. Journal of Ecology 100:16-30. Wardle, D. A., L. R. Walker, and R. D. Bardgett. 2004. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509- 513. Williams, J. W., B. Shuman, P. J. Bartlein, N. S. Diffenbaugh, and T. Webb. 2010. Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America. Geology 38:135-138. Willis, K. J., M. B. Araujo, K. D. Bennett, B. Figueroa-Rangel, C. A. Froyd, and N. Myers. 2007. How can knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B-Biological Sciences 362:175-186. Yelenik, S. G., S. S. Perakis, and D. E. Hibbs. 2013. Regional constraints to nitrogen fixation in post-fire forest communities. Ecology 94:739-750.
 Vitousek, P. M. and W. A. Reiners. 1975. Ecosystem succession and nutrient retention - hypothesis. Bioscience 25:376-381. Wardle, D. A., M. Jonsson, S. Bansal, R. D. Bardgett, M. J. Gundale, and D. B. Metcalfe. 2012. Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. Journal of Ecology 100:16-30. Wardle, D. A., L. R. Walker, and R. D. Bardgett. 2004. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509- 513. Williams, J. W., B. Shuman, P. J. Bartlein, N. S. Diffenbaugh, and T. Webb. 2010. Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America. Geology 38:135-138. Willis, K. J., M. B. Araujo, K. D. Bennett, B. Figueroa-Rangel, C. A. Froyd, and N. Myers. 2007. How can knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B-Biological Sciences 362:175-186. Yelenik, S. G., S. S. Perakis, and D. E. Hibbs. 2013. Regional constraints to nitrogen fixation in post-fire forest communities. Ecology 94:739-750.
12862retention - hypothesis. Bioscience 25:376-381.13863Wardle, D. A., M. Jonsson, S. Bansal, R. D. Bardgett, M. J. Gundale, and D. B. Metcalfe.148642012. Linking vegetation change, carbon sequestration and biodiversity:16866Ecology 100:16-30.17866Wardle, D. A., L. R. Walker, and R. D. Bardgett. 2004. Ecosystem properties and18867Wardle, D. A., L. R. Walker, and R. D. Bardgett. 2004. Ecosystem properties and19868forest decline in contrasting long-term chronosequences. Science 305:509-20513.21870Williams, J. W., B. Shuman, P. J. Bartlein, N. S. Diffenbaugh, and T. Webb. 2010. Rapid,2311time-transgressive, and variable responses to early Holocene midcontinental24471drying in North America. Geology 38:135-138.25873Willis, K. J., M. B. Araujo, K. D. Bennett, B. Figueroa-Rangel, C. A. Froyd, and N. Myers.262027. How can knowledge of the past help to conserve the future?27Biodiversity conservation and the relevance of long-term ecological studies.28976Philosophical Transactions of the Royal Society B-Biological Sciences37362:175-186.3813813813823833843843843843843843853813813823833843843853863863
 Wardle, D. A., M. Jonsson, S. Bansal, R. D. Bardgett, M. J. Gundale, and D. B. Metcalfe. 2012. Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. Journal of Ecology 100:16-30. Wardle, D. A., L. R. Walker, and R. D. Bardgett. 2004. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509- 513. Williams, J. W., B. Shuman, P. J. Bartlein, N. S. Diffenbaugh, and T. Webb. 2010. Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America. Geology 38:135-138. Willis, K. J., M. B. Araujo, K. D. Bennett, B. Figueroa-Rangel, C. A. Froyd, and N. Myers. 2007. How can knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B-Biological Sciences 362:175-186. Yelenik, S. G., S. S. Perakis, and D. E. Hibbs. 2013. Regional constraints to nitrogen fixation in post-fire forest communities. Ecology 94:739-750.
 a Biel Markey Strength Strengt
 a bit insights from island ecosystems in a long-term natural experiment. Journal of Ecology 100:16-30. Wardle, D. A., L. R. Walker, and R. D. Bardgett. 2004. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509- 513. Williams, J. W., B. Shuman, P. J. Bartlein, N. S. Diffenbaugh, and T. Webb. 2010. Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America. Geology 38:135-138. Willis, K. J., M. B. Araujo, K. D. Bennett, B. Figueroa-Rangel, C. A. Froyd, and N. Myers. 2007. How can knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B-Biological Sciences 362:175-186. Yelenik, S. G., S. S. Perakis, and D. E. Hibbs. 2013. Regional constraints to nitrogen fixation in post-fire forest communities. Ecology 94:739-750.
 a Borne and State Sta
 Wardle, D. A., L. R. Walker, and R. D. Bardgett. 2004. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509- 513. Williams, J. W., B. Shuman, P. J. Bartlein, N. S. Diffenbaugh, and T. Webb. 2010. Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America. Geology 38:135-138. Willis, K. J., M. B. Araujo, K. D. Bennett, B. Figueroa-Rangel, C. A. Froyd, and N. Myers. 2007. How can knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B-Biological Sciences 362:175-186. Yelenik, S. G., S. S. Perakis, and D. E. Hibbs. 2013. Regional constraints to nitrogen fixation in post-fire forest communities. Ecology 94:739-750.
 William, D. H., H. Hunder, J. B. Budgete. Loo Joseph Properties and forest decline in contrasting long-term chronosequences. Science 305:509- 513. Williams, J. W., B. Shuman, P. J. Bartlein, N. S. Diffenbaugh, and T. Webb. 2010. Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America. Geology 38:135-138. Willis, K. J., M. B. Araujo, K. D. Bennett, B. Figueroa-Rangel, C. A. Froyd, and N. Myers. 2007. How can knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B-Biological Sciences 362:175-186. Yelenik, S. G., S. S. Perakis, and D. E. Hibbs. 2013. Regional constraints to nitrogen fixation in post-fire forest communities. Ecology 94:739-750.
 bits a contrast of the second and the problem of the second and the seco
 870 871 871 871 871 871 871 871 871 871 872 873 873 874 874 875 875 876 876 876 876 877 877 878 879 879 879 870 871 871 871 872 873 874 875 874 875 875 876 876 977 976 977 976 977 977 978 977 979 979 979 979 979 979 979 970 979 970 970 971 971 972 974 974 975 976 977 978 979 979 979 979 979 979 979 970 970 971 972 974 974 975 976 977 978 979 979 979 979 979 979 970 970 970 970 971 971 972 974 974 974 975 975 975 975 975 975 975 976 976 976 977 976 978 979 979 979 970 974 979 970 974 974 975 975 975 975 975 976 976 976 977
 bit of the second state of the second
 a drying in North America. Geology 38:135-138. Willis, K. J., M. B. Araujo, K. D. Bennett, B. Figueroa-Rangel, C. A. Froyd, and N. Myers. 2007. How can knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B-Biological Sciences 877 362:175-186. Yelenik, S. G., S. S. Perakis, and D. E. Hibbs. 2013. Regional constraints to nitrogen fixation in post-fire forest communities. Ecology 94:739-750.
 ary in North America. Geology 36:153-150. Willis, K. J., M. B. Araujo, K. D. Bennett, B. Figueroa-Rangel, C. A. Froyd, and N. Myers. 2007. How can knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B-Biological Sciences 877 362:175-186. Yelenik, S. G., S. S. Perakis, and D. E. Hibbs. 2013. Regional constraints to nitrogen fixation in post-fire forest communities. Ecology 94:739-750. 881
 Wrins, R. J., M. D. Arado, R. D. Definiert, B. Figueroarkangel, et A. Froyd, and R. Myers. 874 2007. How can knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B-Biological Sciences 876 Philosophical Transactions of the Royal Society B-Biological Sciences 877 362:175-186. Yelenik, S. G., S. S. Perakis, and D. E. Hibbs. 2013. Regional constraints to nitrogen fixation in post-fire forest communities. Ecology 94:739-750. 881
 Biodiversity conservation and the relevance of long-term ecological studies. Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B-Biological Sciences B77 B62:175-186. Yelenik, S. G., S. S. Perakis, and D. E. Hibbs. 2013. Regional constraints to nitrogen fixation in post-fire forest communities. Ecology 94:739-750. B81
 Brownersky conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B-Biological Sciences 362:175-186. Yelenik, S. G., S. S. Perakis, and D. E. Hibbs. 2013. Regional constraints to nitrogen fixation in post-fire forest communities. Ecology 94:739-750. 881 881 9 10 11 11 12 13 14 15 15 16 17 18 18 18 18 19 19 19 11 12 13 14 15 15 16 17 18 18 18 19 19 11 11 11 11 11 11 11 11 11 12 13 14 15 15 16 17 18 18 18 19 11 11 11 11 11 11 12 13 14 14 15 15 16 17 18 18 18 19 11 11 11 11 11 11 12 13 14 14 15 15 16 17 18 18 18 19 19 19 19 19 19 19 11 11 11 11 11 11 11 11 11 12 13 14 14 15 15 16
 30 877 362:175-186. 31 878 Yelenik, S. G., S. S. Perakis, and D. E. Hibbs. 2013. Regional constraints to nitrogen fixation in post-fire forest communities. Ecology 94:739-750. 380 381 383 39 40 41 42 43 44 45 46 47 48 49
 30 507 502.173-100. 31 878 Yelenik, S. G., S. S. Perakis, and D. E. Hibbs. 2013. Regional constraints to nitrogen 32 879 fixation in post-fire forest communities. Ecology 94:739-750. 38 880 39 39 40 41 42 43 44 45 46 47 48 49
32 879 fixation in post-fire forest communities. Ecology 94:739-750. 33 880 35 881 36
33 67.7 34 880 35 881 36 7 38 9 40 41 42 43 43 44 45 6 46 47 48
34 500 35 881 36
35 001 36 37 37 38 39 40 40 41 42 43 43 44 44 45 46 47 48 49
37 38 39 40 41 42 43 44 45 46 47 48 49
38 39 40 41 42 43 44 45 46 47 48 49
39 40 41 42 43 44 45 46 47 48 49
40 41 42 43 44 45 46 47 48 49
41 42 43 44 45 46 47 48 49
43 44 45 46 47 48 49
44 45 46 47 48 49
45 46 47 48 49
46 47 48 49
47 48 49
40
50
51
52
54
55
56
57
58 50
60

Figure 1. Paleoecological studies capture the long-term disturbance histories, state changes in vegetation, and coarse measures of carbon stores. Multiproxy sedimentary data from Yahoo Lake, Washington, USA show how climate affects biomass and how fire mediates tree species composition during periods of rapid climate change (Gavin et al. in press, 2013). (a) Organic content (loss-on-ignition, LOI) and climate as estimated by sea surface temperature (SST) in the NE Pacific Ocean. (b) Macroscopic charcoal stratigraphy quantified at 1-cm intervals. Red lines indicate interpreted fire events near the lake. (c) Pollen percent (colored areas) and needle macrofossil concentration (top axis, needle equivalents per 5 cubic centimeters of sediment) for three coniferous tree species.

Figure 2. Post-fire aboveground carbon (C) accumulation in forests in Alaska. Post-fire vegetation type determines the rate of C accumulation in living aboveground biomass. 254x190mm (72 x 72 DPI)

Figure 4. A well-replicated post-disturbance chronosequence of lodgepole pine (Pinus contorta var. latifolia) forests in the western U.S. shows equilibration of ecosystem nitrogen (N) pools but redistribution of ecosystem N among pools after disturbance (Smithwick et al. 2009). 254x190mm (72 x 72 DPI)

Figure 5. Conceptual diagram showing response of available stocks of growth-limiting nutrients to disturbance. (a) a single disturbance event may serve to increase, decrease, or not affect net stocks of a nutrient depending on post-disturbance accumulation and loss rates. (b) over time, a disturbance regime may gradually increase or decrease nutrient availability, a phenomenon we term the "biogeochemical staircase", (c) over longer timescales, ecosystems often experience the onset of phosphorus limitation and reduced net primary productivity known as retrogression (reproduced from Peltzer 2010). In the oldest stages of ecosystems, disturbances can serve to replenish nutrients. 254x338mm (72 x 72 DPI)

