122,627 research outputs found

    Satellite personal communications system

    Get PDF
    Voice channel communication between low power mobile stations dispersed over a large area is provided by a system which includes a geostationary satellite utilizing a large UHF antenna that can receive a transmission from a caller and retransmit it over any one beam of a matrix of narrow beams, so the chosen beam covers an area in which a designated called party is located. A single up-link control channel occupying a narrow frequency band, can be utilized to receive dial up signals from a caller, and another single down link control channel can be utilized to ring up the called party located anywhere within the continental United States. The satellite antenna includes a matrix of feed horns that not only direct the beams in a controlled matrix onto the area of the continental United States, but also permit detection of the region from which the caller's signal is transmitted and the region from which the called party's answer is received, to enable the interconnection of signals received from these two regions. The system is particularly useful for rural areas

    Design and construction of the IMACS-IFU, a 2000-element integral field unit

    Full text link
    The IMACS-IFU is an Integral Field Unit built for the IMACS spectrograph at the Magellan-I-Telescope at Las Campanas Observatory. It consists of two rectangular fields of 5 by 7 arcseconds, separated by roughly one arcminute. With a total number of 2000 spatial elements it is the second largest fiber-lenslet based IFU worldwide, working in a wavelength range between 400 and 900 nm. Due to the equally sized fields classical background subtraction, beam switching and shuffling are possible observation techniques. One particular design challenge was the single, half a metre long curved slit in combination with a non telecentric output. Besides the construction some preliminary results are described.Comment: 10 pages, 7 figures, 1 table. Proceedings for SPIE poster 5492-175 of SPIE Symposium "Astronomical Telescopes and Instrumentation", June 2004, Glasgo

    An implicit finite-difference solution to the viscous shock layer, including the effects of radiation and strong blowing

    Get PDF
    An implicit finite-difference scheme is developed for the fully coupled solution of the viscous, radiating stagnation-streamline equations, including strong blowing. Solutions are presented for both air injection and injection of carbon-phenolic ablation products into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative-transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized in the study. With minimum number of assumptions for the initially unknown parameters and profile distributions, convergent solutions to the full stagnation-line equations are rapidly obtained by a method of successive approximations. Damping of selected profiles is required to aid convergence of the solutions for massive blowing. It is shown that certain finite-difference approximations to the governing differential equations stabilize and improve the solutions. Detailed comparisons are made with the numerical results of previous investigations. Results of the present study indicate lower radiative heat fluxes at the wall for carbonphenolic ablation than previously predicted

    Radio and X-ray study of two multi-shell Supernova Remnants: Kes79 and G352.7-0.1

    Full text link
    We investigate two multi-shell galactic supernova remnants (SNRs), Kes79 and G352.7-0.1, to understand the causes of such morphology. The research was carried out based on new and reprocessed archival VLA observations and XMM-Newton archival data. The surrounding was investigated based on data extracted from the HI Canadian Galactic Plane Survey, the 13^CO Galactic Ring Survey and the HI Southern Galactic Plane Survey. The present study revealed that the overall morphology of both SNRs is the result of the mass-loss history of their respective progenitor stars. Kes79 would be the product of the gravitational collapse of a massive O9 star evolving near a molecular cloud and within the precursor's wind-driven bubble, while G352.7-0.1 would be the result of interactions of the SNR with an asymmetric wind from the progenitor together with projection effects. No radio point source or pulsar wind nebula was found associated with the X-ray pulsar CXOU J185238.6+004020 in Kes79. The X-ray study of G352.7-0.1, on its hand, revealed that most of the thermal X-ray radiation completely fills in the interior of the remnant and originates in heated ejecta. Characteristic parameters, like radio flux, radio spectral index, age, distance, shock velocity, initial energy and luminosity, were estimated for both SNRs.Comment: 14 pages, 13 figures. Accepted to be published in Astronomy and Astrophysic

    Using Big Bang Nucleosynthesis to Extend CMB Probes of Neutrino Physics

    Full text link
    We present calculations showing that upcoming Cosmic Microwave Background (CMB) experiments will have the power to improve on current constraints on neutrino masses and provide new limits on neutrino degeneracy parameters. The latter could surpass those derived from Big Bang Nucleosynthesis (BBN) and the observationally-inferred primordial helium abundance. These conclusions derive from our Monte Carlo Markov Chain (MCMC) simulations which incorporate a full BBN nuclear reaction network. This provides a self-consistent treatment of the helium abundance, the baryon number, the three individual neutrino degeneracy parameters and other cosmological parameters. Our analysis focuses on the effects of gravitational lensing on CMB constraints on neutrino rest mass and degeneracy parameter. We find for the PLANCK experiment that total (summed) neutrino mass Mν>0.29M_{\nu} > 0.29 eV could be ruled out at 2σ2\sigma or better. Likewise neutrino degeneracy parameters ξνe>0.11\xi_{\nu_{e}} > 0.11 and ∣ξνμ/τ∣>0.49| \xi_{\nu_{\mu/\tau}} | > 0.49 could be detected or ruled out at 2σ2\sigma confidence, or better. For POLARBEAR we find that the corresponding detectable values are Mν>0.75eVM_\nu > 0.75 {\rm eV}, ξνe>0.62\xi_{\nu_{e}} > 0.62, and ∣ξνμ/τ∣>1.1| \xi_{\nu_{\mu/\tau}}| > 1.1, while for EPIC we obtain Mν>0.20eVM_\nu > 0.20 {\rm eV}, ξνe>0.045\xi_{\nu_{e}} > 0.045, and ∣ξνμ/τ∣>0.29|\xi_{\nu_{\mu/\tau}}| > 0.29. Our forcast for EPIC demonstrates that CMB observations have the potential to set constraints on neutrino degeneracy parameters which are better than BBN-derived limits and an order of magnitude better than current WMAP-derived limits.Comment: 27 pages, 11 figures, matches published version in JCA

    The most complete and detailed X-ray view of the SNR Puppis A

    Get PDF
    With the purpose of producing the first detailed full view of Puppis A in X-rays, we carried out new XMM-Newton observations covering the missing regions in the southern half of the supernova remnant (SNR) and combined them with existing XMM-Newton and Chandra data. The new images were produced in the 0.3-0.7, 0.7-1.0 and 1.0-8.0 energy bands. We investigated the SNR morphology in detail, carried out a multi-wavelength analysis and estimated the flux density and luminosity of the whole SNR. The complex structure observed across the remnant confirms that Puppis A evolves in an inhomogeneous, probably knotty interstellar medium. The southwestern corner includes filaments that perfectly correlate with radio features suggested to be associated with shock/cloud interaction. In the northern half of Puppis A the comparison with Spitzer infrared images shows an excellent correspondence between X-rays and 24 and 70 microns emission features, while to the south there are some matched and other unmatched features. X-ray flux densities of 12.6 X 10^-9, 6.2 X 10^-9, and 2.8 X 10^-9 erg cm^-2 s^-1 were derived for the 0.3-0.7, 0.7-1.0 and 1.0-8.0 keV bands, respectively. At the assumed distance of 2.2 kpc, the total X-ray luminosity between 0.3 and 8.0 keV is 1.2 X 10^37 erg s^-1. We also collected and updated the broad-band data of Puppis A between radio and GeV gamma-ray range, producing its spectral energy distribution. To provide constraints to the high-energy emission models, we re-analyzed radio data, estimating the energy content in accelerated particles to be Umin=4.8 X 10^49 erg and the magnetic field strength B=26 muG.Comment: Article accepted to be published in the Astronomy and Astrophysics Main Journa
    • …
    corecore