44 research outputs found
Magnetoresistance of Two-Dimensional Fermions in a Random Magnetic Field
We perform a semiclassical calculation of the magnetoresistance of spinless
two-dimensional fermions in a long-range correlated random magnetic field. In
the regime relevant for the problem of the half filled Landau level the
perturbative Born approximation fails and we develop a new method of solving
the Boltzmann equation beyond the relaxation time approximation. In absence of
interactions, electron density modulations, in-plane fields, and Fermi surface
anisotropy we obtain a quadratic negative magnetoresistance in the weak field
limit.Comment: 12 pages, Latex, no figures, Nordita repor
Competition between quantum-liquid and electron-solid phases in intermediate Landau levels
On the basis of energy calculations we investigate the competition between
quantum-liquid and electron-solid phases in the Landau levels n=1,2, and 3 as a
function of their partial filling factor. Whereas the quantum-liquid phases are
stable only in the vicinity of quantized values 1/(2s+1) of the partial filling
factor, an electron solid in the form of a triangular lattice of clusters with
a few number of electrons (bubble phase) is energetically favorable between
these fillings. This alternation of electron-solid phases, which are insulating
because they are pinned by the residual impurities in the sample, and quantum
liquids displaying the fractional quantum Hall effect explains a recently
observed reentrance of the integral quantum Hall effect in the Landau levels
n=1 and 2. Around half-filling of the last Landau level, a uni-directional
charge density wave (stripe phase) has a lower energy than the bubble phase.Comment: 12 pages, 9 figures; calculation of exact exchange potential for
n=1,2,3 included, energies of electron-solid phases now calculated with the
help of the exact potential, and discussion of approximation include
Rotating spin-1 bosons in the lowest Landau level
We present results for the ground states of a system of spin-1 bosons in a
rotating trap. We focus on the dilute, weakly interacting regime, and restrict
the bosons to the quantum states in the lowest Landau level (LLL) in the plane
(disc), sphere or torus geometries. We map out parts of the zero temperature
phase diagram, using both exact quantum ground states and LLL mean field
configurations. For the case of a spin-independent interaction we present exact
quantum ground states at angular momentum . For general values of the
interaction parameters, we present mean field studies of general ground states
at slow rotation and of lattices of vortices and skyrmions at higher rotation
rates. Finally, we discuss quantum Hall liquid states at ultra-high rotation.Comment: 24 pages, 14 figures, RevTe
Bloch bundles, Marzari-Vanderbilt functional and maximally localized Wannier functions
We consider a periodic Schroedinger operator and the composite Wannier
functions corresponding to a relevant family of its Bloch bands, separated by a
gap from the rest of the spectrum. We study the associated localization
functional introduced by Marzari and Vanderbilt, and we prove some results
about the existence and exponential localization of its minimizers, in
dimension d < 4. The proof exploits ideas and methods from the theory of
harmonic maps between Riemannian manifolds.Comment: 37 pages, no figures. V2: the appendix has been completely rewritten.
V3: final version, to appear in Commun. Math. Physic
Global Phase Diagram of the Kondo Lattice: From Heavy Fermion Metals to Kondo Insulators
We discuss the general theoretical arguments advanced earlier for the T=0
global phase diagram of antiferromagnetic Kondo lattice systems, distinguishing
between the established and the conjectured. In addition to the well-known
phase of a paramagnetic metal with a "large" Fermi surface (P_L), there is also
an antiferromagnetic phase with a "small" Fermi surface (AF_S). We provide the
details of the derivation of a quantum non-linear sigma-model (QNLsM)
representation of the Kondo lattice Hamiltonian, which leads to an effective
field theory containing both low-energy fermions in the vicinity of a Fermi
surface and low-energy bosons near zero momentum. An asymptotically exact
analysis of this effective field theory is made possible through the
development of a renormalization group procedure for mixed fermion-boson
systems. Considerations on how to connect the AF_S and P_L phases lead to a
global phase diagram, which not only puts into perspective the theory of local
quantum criticality for antiferromagnetic heavy fermion metals, but also
provides the basis to understand the surprising recent experiments in
chemically-doped as well as pressurized YbRh2Si2. We point out that the AF_S
phase still occurs for the case of an equal number of spin-1/2 local moments
and conduction electrons. This observation raises the prospect for a global
phase diagram of heavy fermion systems in the Kondo-insulator regime. Finally,
we discuss the connection between the Kondo breakdown physics discussed here
for the Kondo lattice systems and the non-Fermi liquid behavior recently
studied from a holographic perspective.Comment: (v3) leftover typos corrected. (v2) Published version. 32 pages, 4
figures. Section 7, on the connection between the Kondo lattice systems and
the holographic models of non-Fermi liquid, is expanded. (v1) special issue
of JLTP on quantum criticalit
Exciton swapping in a twisted graphene bilayer as a solid-state realization of a two-brane model
It is shown that exciton swapping between two graphene sheets may occur under
specific conditions. A magnetically tunable optical filter is described to
demonstrate this new effect. Mathematically, it is shown that two turbostratic
graphene layers can be described as a "noncommutative" two-sheeted
(2+1)-spacetime thanks to a formalism previously introduced for the study of
braneworlds in high energy physics. The Hamiltonian of the model contains a
coupling term connecting the two layers which is similar to the coupling
existing between two braneworlds at a quantum level. In the present case, this
term is related to a K-K' intervalley coupling. In addition, the experimental
observation of this effect could be a way to assess the relevance of some
theoretical concepts of the braneworld hypothesis.Comment: 15 pages, 3 figures, final version published in European Physical
Journal
Stripes and holes in a two-dimensional model of spinless fermions and hardcore bosons
We consider a Hubbard-like model of strongly-interacting spinless fermions
and hardcore bosons on a square lattice, such that nearest neighbor occupation
is forbidden. Stripes (lines of holes across the lattice forming antiphase
walls between ordered domains) are a favorable way to dope this system below
half-filling. The problem of a single stripe can be mapped to a spin-1/2 chain,
which allows understanding of its elementary excitations and calculation of the
stripe's effective mass for transverse vibrations. Using Lanczos exact
diagonalization, we investigate the excitation gap and dispersion of a hole on
a stripe, and the interaction of two holes. We also study the interaction of
two, three, and four stripes, finding that they repel, and the interaction
energy decays with stripe separation as if they are hardcore particles moving
in one (transverse) direction. To determine the stability of an array of
stripes against phase separation into particle-rich phase and hole-rich liquid,
we evaluate the liquid's equation of state, finding the stripe-array is not
stable for bosons but is possibly stable for fermions.Comment: 24 pages, 18 figure
Pairing and Density Correlations of Stripe Electrons in a Two-Dimensional Antiferromagnet
We study a one-dimensional electron liquid embedded in a 2D antiferromagnetic
insulator, and coupled to it via a weak antiferromagnetic spin exchange
interaction. We argue that this model may qualitatively capture the physics of
a single charge stripe in the cuprates on length- and time scales shorter than
those set by its fluctuation dynamics. Using a local mean-field approach we
identify the low-energy effective theory that describes the electronic spin
sector of the stripe as that of a sine-Gordon model. We determine its phases
via a perturbative renormalization group analysis. For realistic values of the
model parameters we obtain a phase characterized by enhanced spin density and
composite charge density wave correlations, coexisting with subleading triplet
and composite singlet pairing correlations. This result is shown to be
independent of the spatial orientation of the stripe on the square lattice.
Slow transverse fluctuations of the stripes tend to suppress the density
correlations, thus promoting the pairing instabilities. The largest amplitudes
for the composite instabilities appear when the stripe forms an antiphase
domain wall in the antiferromagnet. For twisted spin alignments the amplitudes
decrease and leave room for a new type of composite pairing correlation,
breaking parity but preserving time reversal symmetry.Comment: Revtex, 28 pages incl. 5 figure
Search for nucleon decay into charged antilepton plus meson in 0.316 megaton . years exposure of the Super-Kamiokande water Cherenkov detector
We have searched for proton decays into a charged antilepton (e+, μ+) plus a meson (η, ρ0, ω) and for neutron decays into a charged antilepton (e+, μ+) plus a meson (π−, ρ−) using Super-Kamiokande I-IV data, corresponding to 0.316 megaton⋅years of exposure. This measurement updates the previous published result by using 2.26 times more data and improved analysis methods. No significant evidence for nucleon decay is observed and lower limits on the partial lifetime of the nucleon are obtained. The limits range from 3×1031 to 1×1034 years at 90% confidence level, depending on the decay mode
Search for Boosted Dark Matter Interacting with Electrons in Super-Kamiokande
A search for boosted dark matter using 161.9 kt yr of Super-Kamiokande IV data is presented. We search
for an excess of elastically scattered electrons above the atmospheric neutrino background, with a visible
energy between 100 MeV and 1 TeV, pointing back to the Galactic center or the Sun. No such excess is
observed. Limits on boosted dark matter event rates in multiple angular cones around the Galactic center
and Sun are calculated. Limits are also calculated for a baseline model of boosted dark matter produced
from cold dark matter annihilation or decay. This is the first experimental search for boosted dark matter
from the Galactic center or the Sun interacting in a terrestrial detector