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We perform a semiclassical calculation of the magnetoresistance of spinless two-dimensi
fermions in a long-range correlated random magnetic field. In the regime relevant for the problem
the half filled Landau level the perturbative Born approximation fails and we develop a new method
solving the Boltzmann equation beyond the relaxation time approximation. In absence of interacti
electron density modulations, in-plane fields, and Fermi surface anisotropy, we obtain a quad
negative magnetoresistance in the weak field limit. [S0031-9007(96)01015-0]
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The problem of two-dimensional transport in spatia
random static magnetic fields (RMF) attracted a lot
attention over the last few years. There exists a numbe
experimental realizations of two-dimensional (2D) RM
created by randomly pinned flux vortices in a type
superconducting gate, grains of a type-I superconduc
or a demagnetized permanent magnet placed nearby
2D electron gas [1]. A formally similar problem arises
the contexts of the gauge theory of highTc cuprates [2]
and the composite fermion theory of the half filled Land
level (HFLL) [3,4].

Various analytical and numerical results obtained so
seem to indicate that in the case of a continuum sys
with unbound spectrum all states are localized [5], wh
in the lattice case there might be an extended state
the center of the band [6]. The effective low-ener
description in terms of the unitarys model constructed in
[7] suggests that the RMF problem belongs to the unit
random ensemble. Compared to the conventional prob
of potential scattering corresponding to the orthogo
case, the effects of quantum interference in the RMF
suppressed as a result of broken time-reversal symme
In particular, the logarithmic temperature dependent we
localization corrections to the conductivity appear on
in the next order in the metallicity parameterkFl ¿ 1:
dwls  2s1yp2kFld lnstwyttr d [where the temperature
dependence comes from the inelastic phase breaking
twsT d in the regimetwsTd ¿ ttr  lyyF ]. It suggests a
larger localization lengthLloc , l expfsp2y4d skFld2g than
in the orthogonal case.

It was shown in [8] that quantum fluctuations of par
cle’s positions in the direction transverse to their classi
trajectories are strongly reduced by the RMF. And so
the contribution of quantum backscattering which leads
a negative magnetoresistance (MR) in the presence
weak uniform external magnetic fieldB.

Therefore, in the RMF problem one might expect th
the semiclassical transport theory is applicable in a wi
range of length scales and temperatures than in the ca
time-reversal invariant random potential scattering. Y
a semiclassical treatment of the RMF scattering beyo
the relaxation time approximation may lead to a nontriv
0031-9007y96y77(9)y1817(4)$10.00
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MR. This classical contribution due to the bending of p
ticle’s trajectories dominates over the suppressed effec
weak localization, at least, at not very low temperature

The semiclassical approach to the RMF problem w
undertaken in a number of publications. In [9] th
Subnikov–de Haas (SdH) oscillations ofrxxsBd in the
strong field limit Vc  Bym ¿ 1yttr were studied by
summing over classical cyclotron orbits. However, to fi
rxxsBd in the weak field limit before the onset of the Sd
oscillations one has to develop a semiclassical analys
terms of particle-hole pairs rather than single fermions

The authors of [10] used the linear Boltzmann equat
where the RMF played a role of a random driving for
instead of including it into the collision integral. Th
condition which makes it possible iskFj ¿ 1, wherej

is a correlation length (scale of a typical spatial variatio
of the RMF. However, the analysis performed in [10] w
restricted onto the case relevant for the experiments
where, first, strong potential scattering provides a la
bare value ofrxx , and, second, the spatial correlation
the RMF has a finite range,j21.

In the present Letter we address the case whenrxx is
solely due to the scattering by the RMF described by
(not necessarily short-range) correlatorkbqb2ql  fsqd
independent of the external fieldB. We will not restrict
our consideration onto the lowest order of the perturbat
theory and be able to discuss the casefsqd , e22qj

relevant for the problem of HFLL where the spatial RM
correlations decay asr23 and the lowest order resu
simply diverges.

We start with the Boltzmann equation for the distrib
tion functiongst, $r , f, ed  g0sed 1 dgst, $r, f, ed which
reads as∑
i

≠

≠t
1 i $yf ? $= 1 i

µ
Vc 1

bs$rd
m

∂
≠

≠f

∏
3

dgst, $r , f, ed  ie $yf ? $E
≠g0

≠e
,

(1)

where $yf  yF $nf is a vector of Fermi velocity norma
to the circular Fermi surface parametrized by the angu
© 1996 The American Physical Society 1817
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variablef, $E stands for an infinitesimal external electr
field, andg0  us´F 2 ed is the unperturbed Fermi-Dira
distribution. By contrast to the case of ordinary poten
scattering (which can also be treated atkFj ¿ 1 as a ran-
dom electric field) Eq. (1) implies a trivial dependence
dg one, namely,dgst, $r , f, ed  2dgst, $r, fdds´F 2 ed.

We note, in passing, that one can use Eq. (1) eve
the presence of long-range retarded gauge interactions
tween fermions which spoil the Fermi liquid coherenc
Even though there are no well-defined fermionic quasip
ticles, the kinetic equation in terms of local displaceme
of the fluctuating Fermi surface can still be derived [1
thereby making a close contact with the idea of boson
tion of 2D non-Fermi-liquids [12].

The perturbed distribution function can be found
terms of the (retarded) Green function of the Boltzma
operator for a given RMF configuration

dgst, $r, f, ed  ie
I

df0
Z

d $r 0

3 Gst; $r, $r 0; f, f0d $yf0 $EdseF 2 ed (2)

and then averaged over all possible configurations.
usual, the averaging over disorder restores the translati
invariance in both$r andf spaces:kkGst; $r , $r 0; f, f0dll 
le
to

1818
l

n
e-

.
-
s

-

s
al

G st; $r 2 $r 0; f 2 f0d. Then the calculation of the
frequency-dependent conductivity amounts to comput
the p-wave harmonics of the$q  0 component of the
Fourier transform of

Gsv; $q; f 2 f0d 
X

l

eilsf2f0d1iRc $q3s $nf2 $nf0 d Glsvd
2p

,

where Rc  yFyVc is the cyclotron radius of fermion
with densityne,

sxxsvd 
ie2ne

2m
fG1svd 1 G21svdg ,

sxysvd 
e2ne

2m
fG1svd 2 G21svdg .

In the absence of the RMF the bare Green function is gi
by its harmonicsGs0d

l svd  1yv 2 lVc 1 id.
In our case of no potential disordersd  01d the lowest

order (bosonic) self-energy correction toG
21
l svd  v 2

lVc 1 Slsvd found in [10] makes it only possible to
study theB-dependent correction to the barerxx at high
frequencies or magnetic fields. To proceed with a m
complete account of the effects of the RMF we first so
the equation for the Green function
∑
i

≠

≠t
1 i $yf

$= 1 i

µ
Vc 1

bs$rd
m

∂
≠

≠f

∏
Gst 2 t0; $r , $r 0; f, f0d  dst 2 t0dds$r 2 $r 0ddsf 2 f0d (3)

for an arbitrary RMF configuration by Fourier transforming with respect tot 2 t0 and $r 2 $r 0. The solution of the
resulting equation ∑

v 2 $yf $q 1 i $yf
$= 1 i

µ
Vc 1

bs$rd
m

∂
≠

≠f

∏
Gsv; $q, $r; f, f0d  dsf 2 f0d (4)
gh
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can be searched in the form

Gs $r , $q; f, f0d  2 i
Z `

0
dt

3
I

df00 eitG21
0 s $q;f,f00deiCst;$r ;f00 ,f0d.

(5)

HereC can be viewed as an “eikonal” phase of a partic
hole pair propagating in the RMF. Substituting (5) in
(4) and integrating by parts we obtain the equation forC,µ

i
≠

≠t
1 i $yf

$=

∂
C  2e2iCe2itG21

0
bs$rd
m

≠

≠f
eitG21

0 eiC .

(6)
-

Provided the RMF correlation length is large enou
skFj ¿ 1d one can linearize Eq. (6) (we will comment
this point below) and then end up with an explicit solut

Cst; $r; f, f0d 
1
m

Z t

0
dt0 bs$r 2 $Rt0d

≠

≠f
dsf 2 f0d ,

(7)

where $Rt  RceVcts≠y≠fd $nf is a classical trajectory co
responding to the Larmor precession along the cyclo
orbit. Now taking the Gaussian average of the expo
eiC in (7) over different realizations of the RFM we o
tain the averaged Green function
Gsv, $0; f 2 f0d 
1
i

Z `

0
dt eitfv1iVcs≠y≠fdg exp

"
1
2

Z t

0
dt1

Z t

0
dt2 F

√
2Rc sin

Vcst1 2 t2d
2

!
≠2

≠f2

#
dsf 2 f0d ,

(8)

whereFsrd is a Fourier transform of the RMF correlatorfsqd. The use of Eq. (8) yields the conductivity

sxxsvd 
e2ne

m

Z `

0
dt cossVc 1 vdt exp

"
2

Z t

0
dt0st 2 t0dF

√
2Rc sin

Vct0

2

!#
1 sv ! 2vd . (9)

The formula forsxysvd differs from (9) by the additional factor tansVc 6 vdt in the integrand.
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The exponential factor in the integrand in (9) is co
trolled by the amplitude of the RMF correlatorFsrd. To
check the validity of (9) in the perturbative regime we e
pand the exponent up to the first order inFsrd and perform
thet integration first [it has to be done with an infinitesim
exponente2dt inserted into the integrand which specifi
the retarded nature of the Green function (8)]. Then
can readily obtain

sxxsvd  1yttr sVc 2 vd22 1 sv ! 2vd ,
where the RMF scattering rate is given by the express

1yttr sBd 
Z `

0
dt cosVctF

µ
2Rc sin

Vct

2

∂
, (10)

which is nothing but the result of the first Born appro
mation (BA) [10]. One can also obtain the formula (1
by estimating the,t term in the exponent in (9) in th
t ! ` limit which would be equivalent to the relaxatio
time approximation.

In what follows we will concentrate on the casefsqd 
8p2anee22qj relevant for the problem of HFLL wher
the dimensionless coupling constanta 

1
2 F2sniyned is

proportional to the densityni of ionized Coulomb impu-
rities separated by the spacer of the widthj from the 2D
electron gas and the amount of gauge flux quantaF at-
tached to every electron in the case of a filling facton

with an even denominatorF [3]. In the picture of com-
posite fermions (CF) each charged impurity also beco
a source of a gauge magnetic flux [3,4]. It is believed t
the scattering by randomly distributed fluxes provides
main mechanism of the CF momentum relaxation wh
the potential scattering is negligible.

At B  0 Eq. (10) gives the CF elastic transport ra
1ytCF

tr  syFy2jda which coincides with the BA resu
found in [3]. Although this estimate certainly holds f
a ø 1, it is no longer valid at largea when the CF
mean free path (MFP)lCF  2ja21 gets shorter than
j. The case of HFLLsn  1y2d appears to be margina
sa  2d, andl determined this way just equalsj. Since
a is proportional to F2, the situation becomes eve
worse for compressible states at fractions with higher e
denominators.

This observation signals about a failure of the B
at large couplinga when the matrix elementM $p, $p0 ,p

a skFymjd describing a single event of CF scatteri
by a typical magnetic impurity satisfies neither of the t
conditionsM $p, $p0 ø 1ymj2 nor skFjdymj2 required for
the validity of the BA [13]. This is the semiclassic
regime of a smallsDf , 1ykFj ø 1d angle scattering
which, however, cannot be treated in the lowest orde
the perturbation theory.

Nevertheless, if the parameterkFj is large enough, s
that

kFj ¿
p

a , (11)
one can resort to the so-called eikonal approach
which was essentially implemented by the above solu
of the Boltzmann equation. In fact, it is the condition (1
which allows one to solve Eq. (6) in the first order inbs$rd.
e

s
t
e

n

f

]
n

The use of (9) then leads to

sxx 
e2

2h
skFld 

e2

h
skFjdeaK1sad , (12)

whereK1sxd is the modified Bessel function of the seco
kind. At small a Eq. (12) reproduces the above B
result while at strong coupling it predicts the MFP to
l ø j

p
2pya.

Thus the condition (11) actually provides thatkFl ¿ 1
which is necessary to verify the very use of the kine
equation (1) and to obtain the metallic value of t
conductivity.

In the intermediate coupling regime relevant for t
case of HFLL the condition (11) is fairly well met (a  2
and kFj ø 15) and Eq. (12) gives the CF conductivit
sCF

xx  se2yhd skFjde2K1s2d which is 2.06 times greate
than the BA result. It is worthwhile mentioning that th
experimentally measured resistivity atn  1y2 is about
3 times smaller than the BA estimate [3].

The strong coupling behavior of the MFP (l , jy
p

a

as opposed tol , jya at weak coupling) can alread
be seen in the self-consistent BA which in the case
a finite-range potential scattering is applicable atj ø

B21y2. Adapting this method to the RMF problem on
can achieve a self-consistent improvement of the low
order result by inserting a factore2tyttr into the integrand
in (10) and solving the resulting nonlinear equation forttr .

For the case of HFLL this equation reads as

1yttr 
2ja

yF

Z `

0
dt e2tyttr

∑
t2 1

µ
2j

yF

∂2∏23y2

(13)

and gives the MFPlsad in agreement with the abov
eikonal calculation. In terms of the conventional diagra
matics Eq. (13) corresponds to the sum of uncrossed “r
bow” diagrams for the bosonic self-energy. By contra
the eikonal result (8) includes contributions of the relev
crossed diagrams in all orders of the perturbation theo

In [10] the MR of the RMF problem was identified a
the B dependence ofttr . It is obvious, however, that in
the absence of other mechanisms of momentum relaxa
one cannot use Eq. (10) in order to obtain the MR
Vcttr , 1.

Moreover, in the HFLL case the long-range charac
of Fsrd , r23 leads to a logarithmic divergency of th
second derivative ofrxxsBd at B ! 0, which is, of course,
an artifact of the above expansion. In the framework
the more accurate self-consistent BA one obtains tha
the weak field limitttr sBd is an increasing function ofB
which implies a negative MR. Our self-consistent analy
shows that the decreasing behavior ofttr sBd (positive MR)
in the case offsqd , e2s1y2dq2j2

and smalla reported in
[10], in fact, holds only for large enough fields,Vc .

1yttr s1y ln 1ya2d.
The more complete eikonal treatment of the RM

problem confirms this prediction. Expanding (9) up
the second order inVc we obtain the MR defined a
DrxxsBdyrxx  2fDsxxsBdysxxg 2 fsxysBdysxxg2 in
the form
1819
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DrxxsBd
rxx


V2

c

2k1l

√
kt2l 2 2

ktl2

k1l
1

1
12

*Z t

0
dt0 s3t02t 2 4t03dFst0d

+!
, (14)
n
ly

cto
-

m

de
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ie

]
on

to

to
R

nu
d-

[14
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ad

M
.
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th
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tt.

ys.

),

ys.
wherektnl 
R`

0 dt tn expf2
Rt

0 dt0st 2 t0dFst0dg.
Notice that in the relaxation time approximatio

sktnl 
R`

0 dt tne2tyttr d expression (14) contains on
two terms proportional tokt2l andktl2 which exactly can-
cel out and result in zero MR. Since the exponential faR

t

0 dt0st 2 t0dFst0d appearing in all our calculations in
stead oftyttr behaves as,t2 at smallt, the combined
effect of these terms on the MR is negative and can do
nate over the remaining (strictly positive) contribution.

The MR remains negative for all couplings in a wi
class of realistic RMF correlation functionsfsqd including
the HFLL case ata  2 when the Eq. (14) yields

DrxxsBd
rxx

 20.06sVcttr d2, (15)

while in the strong coupling limit of largea the MR
becomesDrxxsBdyrxx  sVcttr d2spy4 2 1d.

Equation (9) also suggests that the MR may cha
sign atVcttr , 1 and remain positive up toVcttr ø 8
although our semiclassical analysis becomes insuffic
at such high fields.

In the existing artificial realizations of the RMF [1
the random field depends on the applied external
Namely, the RMF correlation functionfsqd appropriate
for the references (a) and (c) from [1] is proportional
B while the one relevant for the reference (b) is,B2. In
either case this trivialB dependence necessarily leads
a positive MR and does not allow one to explore the M
(14) which is the only one present in the case offsqd
independent ofB.

The quadratic positive MR was also reported in a
merical simulation of the lattice version of the RMF mo
eled as an assembly of uncorrelated random fluxes
Again, the anisotropy of the lattice fermion dispersion a
the obvious lack of the large parameterkFj in the short-
range case preclude us from making a direct compar
with our results.

In the case of HFLL one may also think of the bro
minimum ofrxxsBd at n  1y2 suggesting a positive MR
of CF as resulting from the interference between the R
scattering of CF and their residual gauge interactions
was recently shown [15] that this interference can exp
the strong nonuniversal lnT correction torxxsT d observed
at n  1y2 and3y2 [16].

Indeed, it turns out that by contrast to the case of o
nary Coulomb interacting spin-polarized electrons [17]
analysis of the interference correction to the CF cond
tivity at finite Beff  B 2 2pFne reveals a positive MR
which appears to be greater than the negative RMF co
bution (15). The details will be presented elsewhere [

To summarize, we develop a new method of solv
the semiclassical Boltzmann equation for the RMF pr
lem beyond the relaxation time approximation provid
kFl ¿ 1. The obtained solution is used to calculate
r

i-

e

nt
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-

].

n

F
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n

i-
e
-

i-
].

-

RMF transport time, mean free path, and zero-field c
ductivity which all appear to be greater than the cor
sponding results of the Born approximation. In particu
we propose a new estimate of the semiclassical con
tivity at HFLL which is about twice the value found i
[3] and agrees better with the experimental data. In
absence of interactions, Fermi surface and fermion dis
sion anisotropy, periodic electron density modulations,
in-plane fields (all these factors are known to yield posit
contributions to the MR) we obtain the negative quadra
MR in the weak field limit. It remains to be understoo
however, whether or not the semiclassically found ne
tive MR is related to the quantum localization phenome
in the RMF.

The author is grateful to Per Hedegard for a valua
discussion of the results of this work.
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