129,713 research outputs found
The Secondary Star in Cataclysmic Variables and Low Mass X-ray Binaries
We critically re-examine the available data on the spectral types, masses and
radii of the secondary stars in cataclysmic variables (CVs) and low-mass X-ray
binaries (LMXBs), using the new catalogue of Ritter & Kolb (1998) as a starting
point. We find there are 55 reliable spectral type determinations and only 14
reliable mass determinations of CV secondary stars (10 and 5, respectively, in
the case of LMXBs). We derive new spectral type-period, mass-radius,
mass-period and radius-period relations, and compare them with theoretical
predictions. We find that CV secondary stars with orbital periods shorter than
7-8 hours are, as a group, indistinguishable from main sequence stars in
detached binaries. We find it is not valid, however, to estimate the mass from
the spectral type of the secondary star in CVs or LMXBs. We find that LMXB
secondary stars show some evidence for evolution, with secondary stars which
are slightly too large for their mass. We show how the masses and radii of the
secondary stars in CVs can be used to test the validity of the disrupted
magnetic braking model of CV evolution, but we find that the currently
available data are not sufficiently accurate or numerous to allow such an
analysis. As well as considering secondary star masses, we also discuss the
masses of the white dwarfs in CVs, and find mean values of M_1 = 0.69+/-0.13
M_sun below the period gap, and M_1 = 0.80+/-0.22 M_sun above the period gap.Comment: 18 pages, 5 figure
Solar radio emission
Active areas of both observational and theoretical research in which rapid progress is being made are discussed. These include: (1) the dynamic spectrum or frequency versus time plot; (2) physical mechanisms in the development of various types of bursts; (3) microwave type 1, 2, 3, and moving type 4 bursts; (4) bursts caused by trapped electrons; (5) physics of type 3bursts; (6) the physics of type 2 bursts and their related shocks; (7) the physics of both stationary and moving traps and associated type 1 and moving type 4 bursts; and (8) the status of the field of solar radio emission
Responses of a bacterial pathogen to phosphorus limitation of its aquatic invertebrate host
Host nutrition is thought to affect the establishment, persistence, and severity of pathogenic infections. Nutrient-deficient foods possibly benefit pathogens by constraining host immune function or benefit hosts by limiting parasite growth and reproduction. However, the effects of poor elemental food quality on a host's susceptibility to infection and disease have received little study. Here we show that the bacterial microparasite Pasteuria ramosa is affected by the elemental nutrition of its aquatic invertebrate host, Daphnia magna. We found that high food carbon : phosphorus (C: P) ratios significantly reduced infection rates of Pasteuria in Daphnia and led to lower within-host pathogen multiplication. In addition, greater virulent effects of bacterial infection on host reproduction were found in Daphnia-consuming P-deficient food. Poor Daphnia elemental nutrition thus reduced the growth and reproduction of its bacterial parasite, Pasteuria. The effects of poor host nutrition on the pathogen were further evidenced by Pasteuria's greater inhibition of reproduction in P-limited Daphnia. Our results provide strong evidence that elemental food quality can significantly influence the incidence and intensity of infectious disease in invertebrate hosts
Comparison of mass limiting two-phase flow in a straight tube and in a nozzle
Mass-limiting and near mass-limiting two-phase flow in straight tube and nozzle of refrigerant flow loop syste
The Stellar Parameters and Evolutionary State of the Primary in the d'-Symbiotic System StH\alpha190
We report on a high-resolution, spectroscopic stellar parameter and abundance
analysis of a d' symbiotic star: the yellow component of StH\alpha190. This
star has recently been discovered, and confirmed here, to be a rapidly rotating
(vsini=100 km/s) subgiant, or giant, that exhibits radial-velocity variations
of probably at least 40 km/s, indicating the presence of a companion (a white
dwarf star). It is found that the cool stellar component has Teff=5300K and log
g=3.0. The iron and calcium abundances are close to solar, however, barium is
overabundant, relative to Fe and Ca, by about +0.5 dex. The barium enhancement
reflects mass-transfer of s-process enriched material when the current white
dwarf was an asymptotic giant branch (AGB) star. The past and future evolution
of this binary system depends critically on its current orbital period, which
is not yet known. Concerted and frequent radial-velocity measurements are
needed to provide crucial physical constraints to this d' symbiotic system.Comment: 9 pages, 1 table, 3 figures. In press to Astrophysical Journal
Letter
Nucleosynthesis and mixing on the Asymptotic Giant Branch. III. Predicted and observed s-process abundances
We present the results of s-process nucleosynthesis calculations for AGB
stars of different metallicities and initial masses. The computations were
based on previously published stellar evolutionary models that account for the
III dredge up phenomenon occurring late on the AGB. Neutron production is
driven by the 13C(alpha,n)16O reaction during the interpulse periods in a tiny
layer in radiative equilibrium at the top of the He- and C-rich shell. The
s-enriched material is subsequently mixed with the envelope by the III dredge
up, and the envelope composition is computed after each thermal pulse. We
follow the changes in the photospheric abundance of the Ba-peak elements (heavy
s, or `hs') and that of the Zr-peak ones (light s, or `ls'), whose logarithmic
ratio [hs/ls] has often been adopted as an indicator of the s-process
efficiency. The theoretical predictions are compared with published abundances
of s elements for Galactic AGB giants of classes MS, S, SC, post-AGB
supergiants, and for various classes of binary stars. The observations in
general confirm the complex dependence of n captures on metallicity. They
suggest that a moderate spread exists in the abundance of 13C that is burnt in
different stars. Although additional observations are needed, a good
understanding has been achieved of s-process operation in AGB. The detailed
abundance distribution including the light elements (CNO) of a few s-enriched
stars at different metallicity are examined.Comment: Accepted for ApJ, 59 pages, 19 figures, 5 table
Threshold corrections to rapidity distributions of Z and W^\pm bosons beyond N^2 LO at hadron colliders
Threshold enhanced perturbative QCD corrections to rapidity distributions of
and bosons at hadron colliders are presented using the Sudakov
resummed cross sections at NLO level. We have used renormalisation group
invariance and the mass factorisation theorem that these hard scattering cross
sections satisfy to construct the QCD amplitudes. We show that these higher
order threshold QCD corrections stabilise the theoretical predictions for
vector boson production at the LHC under variations of both renormalisation and
factorisation scales.Comment: 17 pages, 8 eps figures. This paper is dedicated to the memory of
W.L.G.A.M. van Neerve
- âŠ