5,745 research outputs found

    Aeroelastic forced response analysis of turbomachinery

    Get PDF
    An introduction is given to the research activity that is underway to enable the prediction of turbomachinery aeroelastic forced response. An effort is being made to assemble a computer program (FREPS) which incorporates the aeroelastic structural models, unsteady aerodynamic models, and forcing function models. The structural and aerodynamic models are currently well developed. The forcing function models are at a primitive level. A significant activity has begun to identify the forcing functions due to stator-rotor aerodynamic interaction

    SSME single crystal turbine blade dynamics

    Get PDF
    A study was performed to determine the dynamic characteristics of the Space Shuttle main engine high pressure fuel turbopump (HPFTP) blades made of single crystal (SC) material. The first and second stage drive turbine blades of HPFTP were examined. The nonrotating natural frequencies were determined experimentally and analytically. The experimental results of the SC second stage blade were used to verify the analytical procedures. The analytical study examined the SC first stage blade natural frequencies with respect to crystal orientation at typical operating conditions. The SC blade dynamic response was predicted to be less than the directionally solidified blade. Crystal axis orientation optimization indicated the third mode interference will exist in any SC orientation

    The effect of steady aerodynamic loading on the flutter stability of turbomachinery blading

    Get PDF
    An aeroelastic analysis is presented which accounts for the effect of steady aerodynamic loading on the aeroelastic stability of a cascade of compressor blades. The aeroelastic model is a two degree of freedom model having bending and torsional displacements. A linearized unsteady potential flow theory is used to determine the unsteady aerodynamic response coefficients for the aeroelastic analysis. The steady aerodynamic loading was caused by the addition of airfoil thickness and camber and steady flow incidence. The importance of steady loading on the airfoil unsteady pressure distribution is demonstrated. Additionally, the effect of steady loading on the tuned flutter behavior and flutter boundaries indicates that neglecting either airfoil thickness, camber or incidence could result in nonconservative estimates of flutter behavior

    American Communists and the Nazi-Soviet Pact

    Get PDF

    Life and reliability of rotating disks

    Get PDF
    In aerospace applications, an engineer must be especially cognizant of size and weight constraints which affect design decisions. Although designing at or below the material fatigue limit may be desirable in most industrial applications, in aerospace application it is almost mandatory to design certain components for a finite life at an acceptable probability of survival. Zaretsky outlined such a methodology based in part on the work of W. Weibull (1939, 1951) and G. Lundberg and A. Palmgren (1947a, 1947b, 1952). It is the objective of this work to apply the method of Zaretsky (1987) to statistically predict the life of a generic solid disk with and without bolt holes; determine the effect of disk design variables, thermal loads, and speed on relative life; and develop a generalized equation for determining disk life by incorporating only these variables

    Localization of aeroelastic modes in mistuned high-energy turbines

    Get PDF
    The effects of blade mistuning on the aerodynamic characteristics of a class of bladed-disk assemblies, namely high energy turbines, are discussed. The specific rotor analyzed is the first stage of turbine blades of the oxidizer turbopump in the Space Shuttle Main Engine. The common occurrence of fatigue cracks for these turbine blades indicates the possibility of high dynamic loading. Since mistuning under conditions of weak interblade coupling has been shown to increase blade response amplitudes drastically for simple structural models of blade assemblies, it provides a plausible explanation for the occurrence of cracks. The focus here is on the effects of frequency mistuning on the aeroelastic stability of the assembly and on the aeroelastic mode shapes

    A review of turbomachinery blade-row interaction research

    Get PDF
    Analytical and experimental research in the area of unsteady aerodynamics of turbomachinery has conventionally been applied to blading which oscillates when placed in a uniformly flowing fluid. Comparatively less effort has been offered for the study of blading which is subjected to nonuniformities within the flow field. The fluid dynamic environment of a blade-row embedded within multi-stage turbomachines is dominated by such highly unsteady fluid flow conditions. The production of wakes and circumferential pressure variations from adjacent blade-rows causes large unsteady energy transfers between the fluid and the blades. Determination of the forced response of a blade requires the ability to predict the unsteady loads which are induced by these aerodynamic sources. A review of research publications was done to determine recent investigations of the response of turbomachinery blading subjected to aerodynamic excitations. Such excitations are a direct result of the blade-row aerodynamic interaction which occurs between adjacent cascades of blades. The reports and papers reviewed have been organized into areas emphasizing experimental or analytical efforts

    Localization of aeroelastic modes in mistuned high-energy turbines

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77061/1/AIAA-23759-105.pd

    Advanced Lithography Simulation Tools for Development and Analysis of Wide-Field High Numerical Aperture Projection Optical Systems

    Get PDF
    Industrial demands for integrated circuits of higher speed and complexity have required the development of advanced lithographic exposure tools capable of sub-half micron resolution over increasingly larger fields. To this end, i-line and deep-uv tools employing Variable, high numerical aperture (NA) objectives are being aggressively developed. The design and manufacture of these advanced optical systems has also grown in complexity, since tighter tolerances on resolution and image placement must be maintained over the larger lens field. At the same time, usable focus and exposure latitude must be retained. The influence of lens aberrations on image formation under different illumination conditions, along with their non-intuitive nature has required the development of simulation tools that allow both the designer and the user of these systems to better understand their implications. These tools can be used to investigate and optimize the lithography process, including the effects of emerging technologies such as phase-shift masking, oblique illumination and frequency plane filtering./super 1,2,3/ This paper presents a method for determining the effects and interactions of various aberrations and illumination conditions using a statistically designed experhnent./super 4/ Fundamental differences in the way the aerial image is formed when varying the pupil energy distribution in the presence of aberrations are presented, as are examples of some of the more interesting effects

    Diabetes Pharmacotherapies and Bladder Cancer: A Medicare Epidemiologic Study

    Get PDF
    Objective: Patients with type II diabetes have an increased risk of bladder cancer and are commonly treated with thiazolidinediones and angiotensin receptor blockers (ARBs), which have been linked to cancer risk. We explored the relationship between use of one or both of these medication types and incident bladder cancer among diabetic patients (diabetics) enrolled in Medicare. Research Design and Methods: We constructed both a prevalent and incident retrospective cohort of pharmacologically treated prevalent diabetics enrolled in a Medicare fee-for-service plan using inpatient, outpatient (2003–2011) and prescription (2006–2011) administrative data. The association of incident bladder cancer with exposure to pioglitazone, rosiglitazone and ARBs was studied using muitivariable Cox’s hazard models with time-dependent covariates in each of the two cohorts. Results: We identified 1,161,443 prevalent and 320,090 incident pharmacologically treated diabetics, among whom 4433 and 1159, respectively, developed incident bladder cancers. In the prevalent cohort mean age was 75.1 years, mean follow-up time was 38.0 months, 20.2% filled a prescription for pioglitazone during follow-up, 10.4% received rosiglitazone, 31.6% received an ARB and 8.0% received combined therapy with pioglitazone + ARB. We found a positive association between bladder cancer and duration of pioglitazone use in the prevalent cohort (P for trend = 0.008), with ≥24 months of pioglitazone exposure corresponding to a 16% (95% confidence interval 0–35%) increase in the incidence of bladder cancer compared to no use. There was a positive association between bladder cancer and rosiglitazone use for \u3c24 months in the prevalent cohort, but no association with ARB use. There were no significant associations in the incident cohort. Conclusions: We found that the incidence of bladder cancer increased with duration of pioglitazone use in a prevalent cohort of diabetics aged 65+ years residing in the USA, but not an incident cohort
    • …
    corecore