310 research outputs found

    Blue Grama Grass Genotype Affects Palatability and Preference by Semi-arid Steppe Grasshoppers

    Get PDF
    The semi-arid shortgrass steppe ecosystem of North America is dominated by blue grama grass (Bouteloua gracilis), a species with substantial intraspecific variability, ecological significance, and economic value. Yet no studies have addressed within species differences in blue grama palatability or insect herbivore preference with respect to plant traits. We performed an experimental study to test the palatability and preference of two blue grama genotypes, wild type versus cultivar, by grasshopper herbivores in the Gomphocerinae subfamily. We found strong evidence that cultivar blue grama was more palatable than wild type and that grasshoppers preferred cultivar plants. Although we could not detect differences in silica content between the two types, we found that cultivar plants were larger, had lower water content, and surprisingly, had reduced nutrient value (greater C:N). These results suggest that intraspecific variation in blue grama size and water content could influence feeding choices by this group of grasshoppers. Conservation managers will have to consider such variation when considering how remnant and restored prairies might be affected by these arthropod herbivores

    Climatic controls of aboveground net primary production in semi‑arid grasslands along a latitudinal gradient portend low sensitivity to warming

    Get PDF
    Although climate models forecast warmer temperatures with a high degree of certainty, precipitation is the primary driver of aboveground net primary production (ANPP) in most grasslands. Conversely, variations in temperature seldom are related to patterns of ANPP. Thus forecasting responses to warming is a challenge, and raises the question: how sensitive will grassland ANPP be to warming? We evaluated climate and multi-year ANPP data (67 years) from eight western US grasslands arrayed along mean annual temperature (MAT; ~7–14 °C) and mean annual precipitation (MAP; ~250–500 mm) gradients. We used regression and analysis of covariance to assess relationships between ANPP and temperature, as well as precipitation (annual and growing season) to evaluate temperature sensitivity of ANPP. We also related ANPP to the standardized precipitation evaporation index (SPEI), which combines precipitation and evapotranspiration to better represent moisture available for plant growth. Regression models indicated that variation in growing season temperature was negatively related to total and graminoid ANPP, but precipitation was a stronger predictor than temperature. Growing season temperature was also a significant parameter in more complex models, but again precipitation was consistently a stronger predictor of ANPP. Surprisingly, neither annual nor growing season SPEI were as strongly related to ANPP as precipitation. We conclude that forecasted warming likely will affect ANPP in these grasslands, but that predicting temperature effects from natural climatic gradients is difficult. This is because, unlike precipitation, warming effects can be positive or negative and moderated by shifts in the C3/C4 ratios of plant communities

    Identifying the cellular targets of drug action in the central nervous system following corticosteroid therapy

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Chemical Neuroscience, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/cn400167nCorticosteroid (CS) therapy is used widely in the treatment of a range of pathologies, but can delay production of myelin, the insulating sheath around central nervous system nerve fibers. The cellular targets of CS action are not fully understood, that is, "direct" action on cells involved in myelin genesis [oligodendrocytes and their progenitors the oligodendrocyte precursor cells (OPCs)] versus "indirect" action on other neural cells. We evaluated the effects of the widely used CS dexamethasone (DEX) on purified OPCs and oligodendrocytes, employing complementary histological and transcriptional analyses. Histological assessments showed no DEX effects on OPC proliferation or oligodendrocyte genesis/maturation (key processes underpinning myelin genesis). Immunostaining and RT-PCR analyses show that both cell types express glucocorticoid receptor (GR; the target for DEX action), ruling out receptor expression as a causal factor in the lack of DEX-responsiveness. GRs function as ligand-activated transcription factors, so we simultaneously analyzed DEX-induced transcriptional responses using microarray analyses; these substantiated the histological findings, with limited gene expression changes in DEX-treated OPCs and oligodendrocytes. With identical treatment, microglial cells showed profound and global changes post-DEX addition; an unexpected finding was the identification of the transcription factor Olig1, a master regulator of myelination, as a DEX responsive gene in microglia. Our data indicate that CS-induced myelination delays are unlikely to be due to direct drug action on OPCs or oligodendrocytes, and may occur secondary to alterations in other neural cells, such as the immune component. To the best of our knowledge, this is the first comparative molecular and cellular analysis of CS effects in glial cells, to investigate the targets of this major class of anti-inflammatory drugs as a basis for myelination deficits.British Neuro-pathological Society, North Staffordshire Medical Institute, and The University of Nottingham

    Shifts in Plant Functional Composition Following Long-term Drought in Grasslands

    Get PDF
    1. Plant traits can provide unique insights into plant performance at the community scale. Functional composition, defined by both functional diversity and community-weighted trait means (CWMs), can affect the stability of above-ground net primary production (ANPP) in response to climate extremes. Further complexity arises, however, when functional composition itself responds to environmental change. The duration of climate extremes, such as drought, is expected to increase with rising global temperatures; thus, understanding the impacts of long-term drought on functional composition and the corresponding effect that has on ecosystem function could improve predictions of ecosystem sensitivity to climate change. 2. We experimentally reduced growing season precipitation by 66% across six temperate grasslands for 4 years and measured changes in three indices of functional diversity (functional dispersion, richness and evenness), community-weighted trait means and phylogenetic diversity (PD). Specific leaf area (SLA), leaf nitrogen content (LNC) and (at most sites) leaf turgor loss point (pi(TLP)) were measured for species cumulatively representing similar to 90% plant cover at each site. 3. Long-term drought led to increased community functional dispersion in three sites, with negligible effects on the remaining sites. Species re-ordering following the mortality/senescence of dominant species was the main driver of increased functional dispersion. The response of functional diversity was not consistently matched by changes in phylogenetic diversity. Community-level drought strategies (assessed as CWMs) largely shifted from drought tolerance to drought avoidance and/or escape strategies, as evidenced by higher community-weighted pi(TLP), SLA and LNC. Lastly, ecosystem drought sensitivity (i.e. relative reduction in ANPP in drought plots) was positively correlated with community-weighted SLA and negatively correlated with functional diversity. 4. Synthesis. Increased functional diversity following long-term drought may stabilize ecosystem functioning in response to future drought. However, shifts in community-scale drought strategies may increase ecosystem drought sensitivity, depending on the nature and timing of drought. Thus, our results highlight the importance of considering both functional diversity and abundance-weighted traits means of plant communities as their collective effect may either stabilize or enhance ecosystem sensitivity to drought

    Ethnic differences in do-not-resuscitate orders after intracerebral hemorrhage.

    Get PDF
    OBJECTIVE: To explore ethnic differences in do-not-resuscitate orders after intracerebral hemorrhage. DESIGN: Population-based surveillance. SETTING: Corpus Christi, Texas. PATIENTS: All cases of intracerebral hemorrhage in the community of Corpus Christi, TX were ascertained as part of the Brain Attack Surveillance in Corpus Christi (BASIC) project. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Medical records were reviewed for do-not-resuscitate orders. Unadjusted and multivariable logistic regression were used to test for associations between ethnicity and do-not-resuscitate orders, both overall ( any do-not-resuscitate ) and within 24 hrs of presentation ( early do-not-resuscitate ), adjusted for age, gender, Glasgow Coma Scale, intracerebral hemorrhage volume, intraventricular hemorrhage, infratentorial hemorrhage, modified Charlson Index, and admission from a nursing home. A total of 270 cases of intracerebral hemorrhage from 2000-2003 were analyzed. Mexican-Americans were younger and had a higher Glasgow Coma Scale than non-Hispanic whites. Mexican-Americans were half as likely as non-Hispanic whites to have early do-not-resuscitate orders in unadjusted analysis (odds ratio 0.45, 95% confidence interval 0.27, 0.75), although this association was not significant when adjusted for age (odds ratio 0.61, 95% confidence interval 0.35, 1.06) and in the fully adjusted model (odds ratio 0.75, 95% confidence interval 0.39, 1.46). Mexican-Americans were less likely than non-Hispanic whites to have do-not-resuscitate orders written at any time point (odds ratio 0.37, 95% confidence interval 0.23, 0.61). Adjustment for age alone attenuated this relationship although it retained significance (odds ratio 0.49, 95% confidence interval 0.29, 0.82). In the fully adjusted model, Mexican-Americans were less likely than non-Hispanic whites to use do-not-resuscitate orders at any time point, although the 95% confidence interval included one (odds ratio 0.52, 95% confidence interval 0.27, 1.00). CONCLUSIONS: Mexican-Americans were less likely than non-Hispanic whites to have do-not-resuscitate orders after intracerebral hemorrhage although the association was attenuated after adjustment for age and other confounders. The persistent trend toward less frequent use of do-not-resuscitate orders in Mexican-Americans suggests that further study is warranted

    Spatial compositional turnover varies with trophic level and body size in marine assemblages of micro- and macroorganisms

    Get PDF
    Abstract Aim Spatial compositional turnover varies considerably among co-occurring assemblages of organisms, presumably shaped by common processes related to species traits. We investigated patterns of spatial turnover in a diverse set of marine assemblages using zeta diversity, which extends traditional pairwise measures of turnover to capture the roles of both rare and common species in shaping assemblage turnover. We tested the generality of hypothesized patterns related to ecological traits and provide insights into mechanisms of biodiversity change. Location Temperate pelagic and benthic marine assemblages of micro- and macroorganisms along south-eastern Australia (30–36° S latitude). Time period 2008–2021. Major taxa studied Bacteria, phytoplankton, zooplankton, fish, and macrobenthic groups. Methods Six marine datasets spanning bacteria to fishes were collated for measures of “species” occurrence, with a 1° latitude grain. For each assemblage, ecological traits of body size, habitat and trophic level were analysed for the form and rate of decline in zeta diversity and for the species retention rate. Results Species at higher trophic levels showed two to three times the rate of zeta diversity decline compared with lower trophic levels, indicating an increase in turnover from phytoplankton to carnivorous fishes. Body size showed the hypothesized unimodal relationship with rates of turnover for macroorganisms. Patterns of bacterial turnover contrasted with those found for macroorganisms, with the highest levels of turnover in pelagic habitats compared with benthic (kelp-associated) habitats. The shape of retention rate curves showed the importance of both rare and common species in driving turnover; a finding that would not have been observable using pairwise (beta diversity) measures of turnover. Main conclusions Our results support theoretical predictions for phytoplankton and macroorganisms, showing an increase in turnover rate with trophic level, but these predictions did not hold for bacteria. Such deviations from theory need to be investigated further to identify underlying processes that govern microbial assemblage dynamics

    Excess stroke in Mexican Americans compared with non-Hispanic Whites: the Brain Attack Surveillance in Corpus Christi Project.

    Get PDF
    Mexican Americans are the largest subgroup of Hispanics, the largest minority population in the United States. Stroke is the leading cause of disability and third leading cause of death. The authors compared stroke incidence among Mexican Americans and non-Hispanic Whites in a population-based study. Stroke cases were ascertained in Nueces County, Texas, utilizing concomitant active and passive surveillance. Cases were validated on the basis of source documentation by board-certified neurologists masked to subjects\u27 ethnicity. From January 2000 to December 2002, 2,350 cerebrovascular events occurred. Of the completed strokes, 53% were in Mexican Americans. The crude cumulative incidence was 168/10,000 in Mexican Americans and 136/10,000 in non-Hispanic Whites. Mexican Americans had a higher cumulative incidence for ischemic stroke (ages 45-59 years: risk ratio = 2.04, 95% confidence interval: 1.55, 2.69; ages 60-74 years: risk ratio = 1.58, 95% confidence interval: 1.31, 1.91; ages \u3eor=75 years: risk ratio = 1.12, 95% confidence interval: 0.94, 1.32). Intracerebral hemorrhage was more common in Mexican Americans (age-adjusted risk ratio = 1.63, 95% confidence interval: 1.24, 2.16). The subarachnoid hemorrhage age-adjusted risk ratio was 1.57 (95% confidence interval: 0.86, 2.89). Mexican Americans experience a substantially greater ischemic stroke and intracerebral hemorrhage incidence compared with non-Hispanic Whites. As the Mexican-American population grows and ages, measures to target this population for stroke prevention are critical

    Past, present, and future roles of long-term experiments in the LTER Network

    Get PDF
    Author Posting. © American Institute of Biological Sciences, 2012. This article is posted here by permission of American Institute of Biological Sciences for personal use, not for redistribution. The definitive version was published in BioScience 62 (2012): 377-389, doi:10.1525/bio.2012.62.4.9.The US National Science Foundation—funded Long Term Ecological Research (LTER) Network supports a large (around 240) and diverse portfolio of long-term ecological experiments. Collectively, these long-term experiments have (a) provided unique insights into ecological patterns and processes, although such insight often became apparent only after many years of study; (b) influenced management and policy decisions; and (c) evolved into research platforms supporting studies and involving investigators who were not part of the original design. Furthermore, this suite of long-term experiments addresses, at the site level, all of the US National Research Council's Grand Challenges in Environmental Sciences. Despite these contributions, we argue that the scale and scope of global environmental change requires a more-coordinated multisite approach to long-term experiments. Ideally, such an approach would include a network of spatially extensive multifactor experiments, designed in collaboration with ecological modelers that would build on and extend the unique context provided by the LTER Network.2012-10-0

    An Anthropocene Without Archaeology—Should We Care?

    Get PDF
    For more than a decade, a movement has been gathering steam among geoscientists to designate an Anthropocene Epoch and formally recognize that we have entered a new geological age in which Earth’s systems are dominated by humans. Chemists, climatologists, and other scientists have entered the discussion, and there is a growing consensus that we are living in the Anthropocene. Nobel Prize-winning atmospheric chemist Paul Crutzen (2002a, 2002b; Crutzen and Stoermer 2000) coined the term, but the idea that humans are a driver of our planet’s climate and ecosystems has much deeper roots. Italian geologist Antonio Stoppani wrote of the “anthropozoic era” in 1873 (Crutzen 2002a), and many others have proposed similar ideas, including journalist Andrew Revkin’s (1992) reference to the “Anthrocene” and Vitousek and colleagues (1997) article about human domination of earth’s ecosystems. It was not until Crutzen (2002a, 2002b) proposed that the Anthropocene began with increased atmospheric carbon levels caused by the Industrial Revolution in the late eighteenth century (including the invention of the steam engine in A.D. 1784), however, that the concept began to gain serious traction among scientists and inspire debate
    • 

    corecore