129 research outputs found

    Trustworthy Quantum Computation through Quantum Physical Unclonable Functions

    Full text link
    Quantum computing is under rapid development, and today there are several cloud-based, quantum computers (QCs) of modest size (>100s of physical qubits). Although these QCs, along with their highly-specialized classical support infrastructure, are in limited supply, they are readily available for remote access and programming. This work shows the viability of using intrinsic quantum hardware properties for fingerprinting cloud-based QCs that exist today. We demonstrate the reliability of intrinsic fingerprinting with real QC characterization data, as well as simulated QC data, and we detail a quantum physically unclonable function (Q-PUF) scheme for secure key generation using unique fingerprint data combined with fuzzy extraction. We use fixed-frequency transmon qubits for prototyping our methods

    Show me the face you had before your parents were born : African-American New Thought ministers and \u27The Black interior\u27

    Get PDF
    This theoretical research critically explores the phenomenon of contemporary African Americans seeking to cultivate individual identities that are not bound by the external demands inherent in a black racial identity. It examines the work and ideas of three African-American New thought ministers who articulate a vision of liberation that is predicated on the cultivation of an interior spiritual identity beyond the social world. This research employs two theoretical frameworks that may help to shed light on the reasons for and implications of contemporary African Americans constructing their identities in this manner. The first of these theoretical frameworks is sociologist Eduardo Bonilla-Silva\u27s (2013) notion of color-blind racism which asserts that in the aftermath of Jim Crow racism, elusive forms of racism have emerged, couched in the rhetoric of post-racial color-blindness. The second theoretical framework is the concept of the post-civil rights condition, and related formulations, summarized by philosopher Paul Taylor (2007). This discourse posits that the political imperatives that previously pre-figured black identity and life trajectories have loosened, resulting in a level of social differentiation within the black community that was not socially permissible during a previous era. Together, these theoretical frameworks help to illuminate the extent to which the views of the African-American New Thought ministers may paradoxically advance contemporary denial of racism and also signal black individuals\u27 capacities to adapt and redefine themselves under changing social conditions. This research may challenge assumptions reflected in existing black identity development models, such as the Black Identity Development model advanced by Bailey Jackson (2012), by illustrating the growing diversity of black self-definition not reflected in existing models. Given the reliance on social identity development models within the field of clinical social work, this research may have significant implications for clinical work with black client populations

    VarSaw: Application-tailored Measurement Error Mitigation for Variational Quantum Algorithms

    Full text link
    For potential quantum advantage, Variational Quantum Algorithms (VQAs) need high accuracy beyond the capability of today's NISQ devices, and thus will benefit from error mitigation. In this work we are interested in mitigating measurement errors which occur during qubit measurements after circuit execution and tend to be the most error-prone operations, especially detrimental to VQAs. Prior work, JigSaw, has shown that measuring only small subsets of circuit qubits at a time and collecting results across all such subset circuits can reduce measurement errors. Then, running the entire (global) original circuit and extracting the qubit-qubit measurement correlations can be used in conjunction with the subsets to construct a high-fidelity output distribution of the original circuit. Unfortunately, the execution cost of JigSaw scales polynomially in the number of qubits in the circuit, and when compounded by the number of circuits and iterations in VQAs, the resulting execution cost quickly turns insurmountable. To combat this, we propose VarSaw, which improves JigSaw in an application-tailored manner, by identifying considerable redundancy in the JigSaw approach for VQAs: spatial redundancy across subsets from different VQA circuits and temporal redundancy across globals from different VQA iterations. VarSaw then eliminates these forms of redundancy by commuting the subset circuits and selectively executing the global circuits, reducing computational cost (in terms of the number of circuits executed) over naive JigSaw for VQA by 25x on average and up to 1000x, for the same VQA accuracy. Further, it can recover, on average, 45% of the infidelity from measurement errors in the noisy VQA baseline. Finally, it improves fidelity by 55%, on average, over JigSaw for a fixed computational budget. VarSaw can be accessed here: https://github.com/siddharthdangwal/VarSaw.Comment: Appears at the International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS) 2024. First two authors contributed equall

    Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1)-specific monoclonal antibodies with extraordinary potency and breadth have recently been described. In humanized mice, combinations of monoclonal antibodies have been shown to suppress viraemia, but the therapeutic potential of these monoclonal antibodies has not yet been evaluated in primates with an intact immune system. Here we show that administration of a cocktail of HIV-1-specific monoclonal antibodies, as well as the single glycan-dependent monoclonal antibody PGT121, resulted in a rapid and precipitous decline of plasma viraemia to undetectable levels in rhesus monkeys chronically infected with the pathogenic simian–human immunodeficiency virus SHIV-SF162P3. A single monoclonal antibody infusion afforded up to a 3.1 log decline of plasma viral RNA in 7 days and also reduced proviral DNA in peripheral blood, gastrointestinal mucosa and lymph nodes without the development of viral resistance. Moreover, after monoclonal antibody administration, host Gag-specific T-lymphocyte responses showed improved functionality. Virus rebounded in most animals after a median of 56 days when serum monoclonal antibody titres had declined to undetectable levels, although, notably, a subset of animals maintained long-term virological control in the absence of further monoclonal antibody infusions. These data demonstrate a profound therapeutic effect of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys as well as an impact on host immune responses. Our findings strongly encourage the investigation of monoclonal antibody therapy for HIV-1 in humans.National Institutes of Health (U.S.) (AI055332)National Institutes of Health (U.S.) (AI060354)National Institutes of Health (U.S.) (AI078526)National Institutes of Health (U.S.) (AI084794)National Institutes of Health (U.S.) (AI095985)National Institutes of Health (U.S.) (AI096040)National Institutes of Health (U.S.) (AI100148)National Institutes of Health (U.S.) (AI10063)Bill & Melinda Gates Foundation (OPP1033091)Bill & Melinda Gates Foundation (OPP1033115)Bill & Melinda Gates Foundation (OPP1040741)Bill & Melinda Gates Foundation (OPP1040753)Ragon Institute of MGH, MIT, and HarvardStavros S. Niarchos FoundationHoward Hughes Medical Institute (Investigator

    Superstaq: Deep Optimization of Quantum Programs

    Full text link
    We describe Superstaq, a quantum software platform that optimizes the execution of quantum programs by tailoring to underlying hardware primitives. For benchmarks such as the Bernstein-Vazirani algorithm and the Qubit Coupled Cluster chemistry method, we find that deep optimization can improve program execution performance by at least 10x compared to prevailing state-of-the-art compilers. To highlight the versatility of our approach, we present results from several hardware platforms: superconducting qubits (AQT @ LBNL, IBM Quantum, Rigetti), trapped ions (QSCOUT), and neutral atoms (Infleqtion). Across all platforms, we demonstrate new levels of performance and new capabilities that are enabled by deeper integration between quantum programs and the device physics of hardware.Comment: Appearing in IEEE QCE 2023 (Quantum Week) conferenc

    Is disrupted sleep a risk factor for Alzheimer's disease?:Evidence from a two-sample Mendelian randomization analysis

    Get PDF
    Background It is established that Alzheimer’s disease (AD) patients experience sleep disruption. However, it remains unknown whether disruption in the quantity, quality or timing of sleep is a risk factor for the onset of AD. Methods We used the largest published genome-wide association studies of self-reported and accelerometer-measured sleep traits (chronotype, duration, fragmentation, insomnia, daytime napping and daytime sleepiness), and AD. Mendelian randomization (MR) was used to estimate the causal effect of self-reported and accelerometer-measured sleep parameters on AD risk. Results Overall, there was little evidence to support a causal effect of sleep traits on AD risk. There was some suggestive evidence that self-reported daytime napping was associated with lower AD risk [odds ratio (OR): 0.70, 95% confidence interval (CI): 0.50–0.99). Some other sleep traits (accelerometer-measured ‘eveningness’ and sleep duration, and self-reported daytime sleepiness) had ORs of a similar magnitude to daytime napping, but were less precisely estimated. Conclusions Overall, we found very limited evidence to support a causal effect of sleep traits on AD risk. Our findings provide tentative evidence that daytime napping may reduce AD risk. Given that this is the first MR study of multiple self-report and objective sleep traits on AD risk, findings should be replicated using independent samples when such data become available

    A systematic review and critical assessment of incentive strategies for discovery and development of novel antibiotics

    Get PDF
    Despite the growing threat of antimicrobial resistance, pharmaceutical and biotechnology firms are reluctant to develop novel antibiotics because of a host of market failures. This problem is complicated by public health goals that demand antibiotic conservation and equitable patient access. Thus, an innovative incentive strategy is needed to encourage sustainable investment in antibiotics. This systematic review consolidates, classifies and critically assesses a total of 47 proposed incentives. Given the large number of possible strategies, a decision framework is presented to assist with the selection of incentives. This framework focuses on addressing market failures that result in limited investment, public health priorities regarding antibiotic stewardship and patient access, and implementation constraints and operational realities. The flexible nature of this framework allows policy makers to tailor an antibiotic incentive package that suits a country’s health system structure and needs

    Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population

    Get PDF
    Almost all genetic risk factors for autism spectrum disorders (ASDs) can be found in the general population, but the effects of that risk are unclear in people not ascertained for neuropsychiatric symptoms. Using several large ASD consortia and population based resources, we find genetic links between ASDs and typical variation in social behavior and adaptive functioning. This finding is evidenced through both inherited and de novo variation, indicating that multiple types of genetic risk for ASDs influence a continuum of behavioral and developmental traits, the severe tail of which can result in an ASD or other neuropsychiatric disorder diagnosis. A continuum model should inform the design and interpretation of studies of neuropsychiatric disease biology
    • …
    corecore