251,221 research outputs found
Automobile ride quality experiments correlated to iso-weighted criteria
As part of an overall study to evaluate the usefulness of ride quality criteria for the design of improved ground transportation systems an experiment was conducted involving subjective and objective measurement of ride vibrations found in an automobile riding over roadways of various roughness. Correlation of the results led to some very significant relationships between passenger rating and ride accelerations. The latter were collapsed using a frequency-weighted root mean square measure of the random vibration. The results suggest the form of a design criterion giving the relationship between ride vibration and acceptable automobile ride quality. Further the ride criterion is expressed in terms that relate to rides with which most people are familiar. The design of the experiment, the ride vibration data acquisition, the concept of frequency weighting and the correlations found between subjective and objective measurements are presented
Mars Mariner 4 - Identification of some Martian surface features
Martian surface features identified from photographs by Mariner 4 space prob
Proportional-integral-plus (PIP) control of time delay systems
The paper shows that the digital proportional-integral-plus (PIP) controller formulated within the context of non-minimum state space (NMSS) control system design methodology is directly equivalent, under certain non-restrictive pole assignment conditions, to the equivalent digital Smith predictor (SP) control system for time delay systems. This allows SP controllers to be considered within the context of NMSS state variable feedback control, so that optimal design methods can be exploited to enhance the performance of the SP controller. Alternatively, since the PIP design strategy provides a more flexible approach, which subsumes the SP controller as one option, it provides a superior basis for general control system design. The paper also discusses the robustness and disturbance response characteristics of the two PIP control structures that emerge from the analysis and demonstrates the efficacy of the design methods through simulation examples and the design of a climate control system for a large horticultural glasshouse system
Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae
Green fluorescent protein (GFP)-like pigments are responsible for the vivid colouration of many reef-building corals and have been proposed to act as photoprotectants. Their role remains controversial because the functional mechanism has not been elucidated. We provide direct evidence to support a photoprotective role of the non-fluorescent chromoproteins (CPs) that form a biochemically and photophysically distinct group of GFP-like proteins. Based on observations of Acropora nobilis from the Great Barrier Reef, we explored the photoprotective role of CPs by analysing five coral species under controlled conditions. In vitro and in hospite analyses of chlorophyll excitation demonstrate that screening by CPs leads to a reduction in chlorophyll excitation corresponding to the spectral properties of the specific CPs present in the coral tissues. Between 562 and 586 nm, the CPs maximal absorption range, there was an up to 50 % reduction of chlorophyll excitation. The screening was consistent for established and regenerating tissue and amongst symbiont clades A, C and D. Moreover, among two differently pigmented morphs of Acropora valida grown under identical light conditions and hosting subclade type C3 symbionts, high CP expression correlated with reduced photodamage under acute light stress
Emulation of multivariate simulators using thin-plate splines with application to atmospheric dispersion
It is often desirable to build a statistical emulator of a complex computer simulator in order to perform analysis which would otherwise be computationally infeasible. We propose methodology to model multivariate output from a computer simulator taking into account output structure in the responses. The utility of this approach is demonstrated by applying it to a chemical and biological hazard prediction model. Predicting the hazard area which results from an accidental or deliberate chemical or biological release is imperative in civil and military planning and also in emergency response. The hazard area resulting from such a release is highly structured in space and we therefore propose the use of a thin-plate spline to capture the spatial structure and fit a Gaussian process emulator to the coefficients of the resultant basis functions. We compare and contrast four different techniques for emulating multivariate output: dimension-reduction using (i) a fully Bayesian approach with a principal component basis, (ii) a fully Bayesian approach with a thin-plate spline basis, assuming that the basis coefficients are independent, and (iii) a “plug-in” Bayesian approach with a thin-plate spline basis and a separable covariance structure; and (iv) a functional data modeling approach using a tensor-product (separable) Gaussian process. We develop methodology for the two thin-plate spline emulators and demonstrate that these emulators significantly outperform the principal component emulator. Further, the separable thin-plate spline emulator, which accounts for the dependence between basis coefficients, provides substantially more realistic quantification of uncertainty, and is also computationally more tractable, allowing fast emulation. For high resolution output data, it also offers substantial predictive and computational ad- vantages over the tensor-product Gaussian process emulator
Merit - An evaluation tool for 100% renewable energy provision
Islands represent an interesting challenge in terms of energy supply. A great deal of work has been carried out to look at specific aspects of this issue on different islands. Unfortunately, results from one study cannot be easily applied to other islands due to island-specific resources and energy-use profiles. A quantitative evaluation tool (MERIT) is presented here, which is able to match half-hourly energy demands (heat, electricity, hot water and transport) with local supplies. The program examines the energy balance on any scale, from an individual building through to an entire country, thereby providing a powerful and generic aid to decision making. This paper demonstrates the generality and usefulness of MERIT by using it to analyse the options for creating an energy-autonomous community on a typical, small island off the west coast of Scotland. Results are presented showing the feasibility of accomplishing 100% renewable provision on this island using available local resources
Measurement of the horizontal velocity of wind perturbations in the middle atmosphere by spaced MF radar systems
Two remote receiving sites have been set up at a distance of approx 40 km from the main MF radar system. This allows measurement of upper atmosphere winds from 60-120 km (3 km resolution) at the corners of an approximately equilateral triangle of side approx 20 km. Some preliminary data are compared through cross correlation and cross spectral analysis in an attempt to determine the horizontal velocity of wind perturbations and/or the horizontal wavelength and phase velocity of gravity waves
Improved Cardiorespiratory Fitness Is Associated with Increased Cortical Thickness in Mild Cognitive Impairment
Cortical atrophy is a biomarker of Alzheimer’s disease (AD) that correlates with clinical symptoms. This study examined changes in cortical thickness from before to after an exercise intervention in mild cognitive impairment (MCI) and healthy elders. Thirty physically inactive older adults (14 MCI, 16 healthy controls) underwent MRI before and after participating in a 12-week moderate intensity walking intervention. Participants were between the ages of 61 and 88. Change in cardiorespiratory fitness was assessed using residualized scores of the peak rate of oxygen consumption (V̇O2peak) from pre- to post-intervention. Structural magnetic resonance images were processed using FreeSurfer v5.1.0. V̇O2peak increased an average of 8.49%, which was comparable between MCI and healthy elders. Overall, cortical thickness was stable except for a significant decrease in the right fusiform gyrus in both groups. However, improvement in cardiorespiratory fitness due to the intervention (V̇O2peak) was positively correlated with cortical thickness change in the bilateral insula, precentral gyri, precuneus, posterior cingulate, and inferior and superior frontal cortices. Moreover, MCI participants exhibited stronger positive correlations compared to healthy elders in the left insula and superior temporal gyrus. A 12-week moderate intensity walking intervention led to significantly improved fitness in both MCI and healthy elders. Improved V̇O2peak was associated with widespread increased cortical thickness, which was similar between MCI and healthy elders. Thus, regular exercise may be an especially beneficial intervention to counteract cortical atrophy in all risk groups, and may provide protection against future cognitive decline in both healthy elders and MCI
Nonlinearity and pixel shifting effects in HXRG infrared detectors
We study the nonlinearity (NL) in the conversion from charge to voltage in
infrared detectors (HXRG) for use in precision astronomy. We present laboratory
measurements of the NL function of a H2RG detector and discuss the accuracy to
which it would need to be calibrated in future space missions to perform
cosmological measurements through the weak gravitational lensing technique. In
addition, we present an analysis of archival data from the infrared H1RG
detector of the Wide Field Camera 3 in the Hubble Space Telescope that provides
evidence consistent with the existence of a sensor effect analogous to the
brighter-fatter effect found in Charge-Coupled Devices. We propose a model in
which this effect could be understood as shifts in the effective pixel
boundaries, and discuss prospects of laboratory measurements to fully
characterize this effect.Comment: Accepted for publication in the Journal of Instrumentation (JINST).
Part of "Precision Astronomy with Fully Depleted CCDs" (Dec 1-2, 2016),
Brookhaven National Laboratory, Upton, NY, US
Constraints on turbulent velocity broadening for a sample of clusters, groups and elliptical galaxies using XMM-Newton
Using the width of emission lines in XMM-Newton Reflection Grating
Spectrometer spectra, we place direct constraints on the turbulent velocities
of the X-ray emitting medium in the cores of 62 galaxy clusters, groups and
elliptical galaxies. We find five objects where we can place an upper limit on
the line-of-sight broadening of 500 km/s (90 per cent confidence level), using
a single thermal component model. Two other objects are lower than this limit
when two thermal components are used. Half of the objects examined have an
upper limit on the velocity broadening of less than 700 km/s. To look for
objects which have significant turbulent broadening, we use Chandra spectral
maps to compute the expected broadening caused by the spatial extent of the
source. Comparing these with our observed results, we find that Klemola 44 has
extra broadening at the level of 1500 km/s. RX J1347.5-1145 shows weak evidence
for turbulent velocities at 800 km/s. In addition we obtain limits on
turbulence for Zw3146, Abell 496, Abell 1795, Abell 2204 and HCG 62 of less
than 200 km/s. After subtraction of the spatial contribution and including a 50
km/s systematic uncertainty, we find at least 15 sources with less than 20 per
cent of the thermal energy density in turbulence.Comment: 17 pages, 17 figures, accepted by MNRAS. Includes minor edits to
proo
- …