36 research outputs found
Mast Cells in Stress, Pain, Blood-Brain Barrier, Neuroinflammation and Alzheimer’s Disease
Mast cell activation plays an important role in stress-mediated disease pathogenesis. Chronic stress cause or exacerbate aging and age-dependent neurodegenerative diseases. The severity of inflammatory diseases is worsened by the stress. Mast cell activation-dependent inflammatory mediators augment stress associated pain and neuroinflammation. Stress is the second most common trigger of headache due to mast cell activation. Alzheimer’s disease (AD) is a progressive irreversible neurodegenerative disease that affects more women than men and woman’s increased susceptibility to chronic stress could increase the risk for AD. Modern life-related stress, social stress, isolation stress, restraint stress, early life stress are associated with an increased level of neurotoxic beta amyloid (Aβ) peptide. Stress increases cognitive dysfunction, generates amyloid precursor protein (APP), hyperphosphorylated tau, neurofibrillary tangles (NFTs), and amyloid plaques (APs) in the brain. Stress-induced Aβ persists for years and generates APs even several years after the stress exposure. Stress activates hypothalamic-pituitary adrenal (HPA) axis and releases corticotropin-releasing hormone (CRH) from hypothalamus and in peripheral system, which increases the formation of Aβ, tau hyperphosphorylation, and blood-brain barrier (BBB) disruption in the brain. Mast cells are implicated in nociception and pain. Mast cells are the source and target of CRH and other neuropeptides that mediate neuroinflammation. Microglia express receptor for CRH that mediate neurodegeneration in AD. However, the exact mechanisms of how stress-mediated mast cell activation contribute to the pathogenesis of AD remains elusive. This mini-review highlights the possible role of stress and mast cell activation in neuroinflammation, BBB, and tight junction disruption and AD pathogenesis
Technological Processes for Conversion of Lignocellulosic Biomass to Bioethanol
Bioethanol might be one of the most potent solutions to overcome the demand for liquid transportation fuel. The demand for ethanol has been continually increasing on account of the growth of user industries and use of ethanol as a fuel. However, the production and availability of ethanol has largely lagged behind. The major problem with bioethanol production is the availability of raw material. Lignocellulosic biomass is the most promising feedstock considering its abundant availability and low cost. Ethanol production is much more challenging and difficult when lignocellulosic material is to be used as raw material. Unlike the starch-based materials, pretreatment and hydrolysis of lignocellulosic material produce a mixture of pentose and hexoses along with other inhibiting compounds, causing many problems in the fermentation process. Bioconversion of lignocellulosic biomass to ethanol requires three major unit operations including pretreatment, hydrolysis, and fermentation, which is comprehensively summarize in this review
Glia Maturation Factor and Mitochondrial Uncoupling Proteins 2 and 4 Expression in the Temporal Cortex of Alzheimer’s Disease Brain
Alzheimer’s disease (AD) is characterized by the presence of neuropathological lesions containing amyloid plaques (APs) and neurofibrillary tangles (NFTs). AD is associated with mitochondrial dysfunctions, neuroinflammation and neurodegeneration in the brain. We have previously demonstrated enhanced expression of the proinflammatory protein glia maturation factor (GMF) in glial cells near APs and NFTs in the AD brains. Parahippocampal gyrus consisting of entorhinal and perirhinal subdivisions of temporal cortex is the first brain region affected during AD pathogenesis. Current paradigm implicates oxidative stress-mediated neuronal damage contributing to the early pathology in AD with mitochondrial membrane potential regulating reactive oxygen species (ROS) production. The inner mitochondrial membrane anion transporters called the uncoupling proteins (UCPs), function as regulators of cellular homeostasis by mitigating oxidative stress. In the present study, we have analyzed the expression of GMF and mitochondrial UCP2 and UCP4 in the parahippocampal gyrus of AD and non-AD brains by immunostaining techniques. APs were detected by thioflavin-S fluorescence staining or immunohistochemistry (IHC) with 6E10 antibody. Our current results suggest that upregulation of GMF expression is associated with down-regulation of UCP2 as well as UCP4 in the parahippocampal gyrus of AD brains as compared to non-AD brains. Further, GMF expression is associated with up-regulation of inducible nitric oxide synthase (iNOS), the enzyme that induces the production of nitric oxide (NO), as well as nuclear factor kB p65 (NF-κB p65) expression. Also, GMF appeared to localize to the mitochondria in AD brains. Based on our current observations, we propose that enhanced expression of GMF down-regulates mitochondrial UCP2 and UCP4 thereby exacerbating AD pathophysiology and this effect is potentially mediated by iNOS and NF-κB. Thus, GMF functions as an activator protein that interferes with the cytoprotective mechanisms in AD brains
Dopaminergic Toxin 1-Methyl-4-Phenylpyridinium, Proteins α-Synuclein and Glia Maturation Factor Activate Mast Cells and Release Inflammatory Mediators.
Parkinson's disease (PD) is characterized by the presence of Lewy bodies and degeneration of dopaminergic neurons. 1-methyl-4-phenylpyridinium (MPP+), a metabolite of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and Lewy body component α-synuclein activates glia in PD pathogenesis. Mast cells and glia maturation factor (GMF) are implicated in neuroinflammatory conditions including Multiple Sclerosis. However, the role of mast cells in PD is not yet known. We have analyzed the effect of recombinant GMF, MPP+, α-synuclein and interleukin-33 (IL-33) on mouse bone marrow-derived cultured mast cells (BMMCs), human umbilical cord blood-derived cultured mast cells (hCBMCs) and mouse brain-derived cultured astrocytes by quantifying cytokines/chemokines released using ELISA or by detecting the expression of co-stimulatory molecules CD40 and CD40L by flow cytometry. GMF significantly released chemokine (C-C motif) ligand 2 (CCL2) from BMMCs but its release was reduced in BMMCs from GMF knockout mice. GMF, α-synuclein and MPP+ released IL-1β, β-hexosaminidase from BMMCs, and IL-8 from hCBMCs. GMF released CCL5, and IL-33- induced the expression of GMF from hCBMCs. Novel GMF expression was detected in hCBMCs and BMMCs by immunocytochemistry. GMF released tumor necrosis factor-alpha (TNF-α) from mouse astrocytes, and this release was greater in BMMC- astrocyte coculture than in individual cultures. Flow cytometry results showed increased IL-33 expression by GMF and MPP+, and GMF-induced CD40 expression in astrocytes. Proinflammatory mediator release by GMF, MPP+ and α-synuclein, as well as GMF expression by mast cells indicate a potential therapeutic target for neurodegenerative diseases including PD
Mast Cell Activation, Neuroinflammation, and Tight Junction Protein Derangement in Acute Traumatic Brain Injury
Traumatic brain injury (TBI) is one of the major health problems worldwide that causes death or permanent disability through primary and secondary damages in the brain. TBI causes primary brain damage and activates glial cells and immune and inflammatory cells, including mast cells in the brain associated with neuroinflammatory responses that cause secondary brain damage. Though the survival rate and the neurological deficiencies have shown significant improvement in many TBI patients with newer therapeutic options, the underlying pathophysiology of TBI-mediated neuroinflammation, neurodegeneration, and cognitive dysfunctions is understudied. In this study, we analyzed mast cells and neuroinflammation in weight drop-induced TBI. We analyzed mast cell activation by toluidine blue staining, serum chemokine C-C motif ligand 2 (CCL2) level by enzyme-linked immunosorbent assay (ELISA), and proteinase-activated receptor-2 (PAR-2), a mast cell and inflammation-associated protein, vascular endothelial growth factor receptor 2 (VEGFR2), and blood-brain barrier tight junction-associated claudin 5 and Zonula occludens-1 (ZO-1) protein expression in the brains of TBI mice. Mast cell activation and its numbers increased in the brains of 24 h and 72 h TBI when compared with sham control brains without TBI. Mouse brains after TBI show increased CCL2, PAR-2, and VEGFR2 expression and derangement of claudin 5 and ZO-1 expression as compared with sham control brains. TBI can cause mast cell activation, neuroinflammation, and derangement of tight junction proteins associated with increased BBB permeability. We suggest that inhibition of mast cell activation can suppress neuroimmune responses and glial cell activation-associated neuroinflammation and neurodegeneration in TBI