7,487 research outputs found
Enhanced tunneling across nanometer-scale metal-semiconductor interfaces
We have measured electrical transport across epitaxial, nanometer-sized
metal-semiconductor interfaces by contacting CoSi2-islands grown on Si(111)
with an STM-tip. The conductance per unit area was found to increase with
decreasing diode area. Indeed, the zero-bias conductance was found to be about
10^4 times larger than expected from downscaling a conventional diode. These
observations are explained by a model, which predicts a narrower barrier for
small diodes and therefore a greatly increased contribution of tunneling to the
electrical transport.Comment: 3 pages, 2 EPS-figures; accepted for publication in Appl. Phys. Let
Scaling of nano-Schottky-diodes
A generally applicable model is presented to describe the potential barrier
shape in ultra small Schottky diodes. It is shown that for diodes smaller than
a characteristic length (associated with the semiconductor doping level)
the conventional description no longer holds. For such small diodes the
Schottky barrier thickness decreases with decreasing diode size. As a
consequence, the resistance of the diode is strongly reduced, due to enhanced
tunneling. Without the necessity of assuming a reduced (non-bulk) Schottky
barrier height, this effect provides an explanation for several experimental
observations of enhanced conduction in small Schottky diodes.Comment: 4 pages, 4 figures, accepted for publication in Appl. Phys. Lett.,
some minor additions and correction
Staggered Fermions and Gauge Field Topology
Based on a large number of smearing steps, we classify SU(3) gauge field
configurations in different topological sectors. For each sector we compare the
exact analytical predictions for the microscopic Dirac operator spectrum of
quenched staggered fermions. In all sectors we find perfect agreement with the
predictions for the sector of topological charge zero, showing explicitly that
the smallest Dirac operator eigenvalues of staggered fermions at presently
realistic lattice couplings are insensitive to gauge field topology. On the
smeared configurations, eigenvalues clearly separate out from the rest
on configurations of topological charge , and move towards zero in
agreement with the index theorem.Comment: LaTeX, 10 page
Observation of electronic and atomic shell effects in gold nanowires
The formation of gold nanowires in vacuum at room temperature reveals a
periodic spectrum of exceptionally stable diameters. This is identified as
shell structure similar to that which was recently discovered for alkali metals
at low temperatures. The gold nanowires present two competing `magic' series of
stable diameters, one governed by electronic structure and the other by the
atomic packing.Comment: 4 pages, 4 figure
Observation of a parity oscillation in the conductance of atomic wires
Using a scanning tunnel microscope or mechanically controlled break
junctions, atomic contacts of Au, Pt and Ir are pulled to form chains of atoms.
We have recorded traces of conductance during the pulling process and averaged
these for a large amount of contacts. An oscillatory evolution of conductance
is observed during the formation of the monoatomic chain suggesting a
dependence on even or odd numbers of atoms forming the chain. This behaviour is
not only present in the monovalent metal Au, as it has been previously
predicted, but is also found in the other metals which form chains suggesting
it to be a universal feature of atomic wires
Asynchronous event driven distributed energy management using profile steering
Distributed Energy Management methodologies with a scheduling approach based on predictions require means to avoid problems related to prediction errors. Various approaches deal with such prediction errors by applying a different online control mechanism, such as a double-sided auction. However, this results in two separate control mechanisms for the planning phase and the real-time control phase. In this paper, we present a two-phase approach with profile steering based control in both phases. The first phase is synchronous and uses predictions to create a planning. The second phase uses profile steering to schedule individual devices in an event driven and asynchronous manner. Simulation results show that this methodology results in an improved power quality and follows the planning better with a RMSE reduction of up to 34%. In addition, it provides more robustness to failure of connection and improves transparency of its actions to prosumers
Spin Hall effect of conserved current: Conditions for a nonzero spin Hall current
We study the spin Hall effect taking into account the impurity scattering
effect as general as possible with the focus on the definition of the spin
current. The conserved bulk spin current (Shi et al. [Phys. Rev. Lett. 96,
076604 (2006)]) satisfying the continuity equation of spin is considered in
addition to the conventional one defined by the symmetric product of the spin
and velocity operators. Conditions for non-zero spin Hall current are
clarified. In particular, it is found that (i) the spin Hall current is
non-zero in the Rashba model with a finite-range impurity potential, and (ii)
the spin Hall current vanishes in the cubic Rashba model with a
-function impurity potential.Comment: 5 pages, minor change from the previous versio
Remote sensing and hydrologic models for performance assessment in Sirsa Irrigation Circle, India
Irrigation management / Irrigation systems / Irrigation canals / Performance evaluation / Remote sensing / GIS / Models / Irrigated farming / Hydrology / Satellite surveys / Irrigation scheduling / Evapotranspiration / India
Newly Discovered Bright z~9-10 Galaxies and Improved Constraints on Their Prevalence Using the Full CANDELS Area
We report the results of an expanded search for z~9-10 candidates over the
~883 arcmin^2 CANDELS+ERS fields. This study adds 147 arcmin^2 to the search
area we consider over the CANDELS COSMOS, UDS, and EGS fields, while expanding
our selection to include sources with bluer J_{125}-H_{160} colors than our
previous J_{125}-H_{160}>0.5 mag selection. In searching for new z~9-10
candidates, we make full use of all available HST, Spitzer/IRAC, and
ground-based imaging data. As a result of our expanded search and use of
broader color criteria, 3 new candidate z~9-10 galaxies are identified. We also
find again the z=8.683 source previously confirmed by Zitrin+2015. This brings
our sample of probable z~9-11 galaxy candidates over the CANDELS+ERS fields to
19 sources in total, equivalent to 1 candidate per 47 arcmin^2 (1 per 10
WFC3/IR fields). To be comprehensive, we also discuss 28 mostly lower
likelihood z~9-10 candidates, including some sources that seem to be reliably
at z>8 using the HST+IRAC data alone, but which the ground-based data show are
much more likely at z<4. One case example is a bright z~9.4 candidate COS910-8
which seems instead to be at z~2. Based on this expanded sample, we obtain a
more robust LF at z~9 and improved constraints on the volume density of bright
z~9 and z~10 galaxies. Our improved z~9-10 results again reinforce previous
findings for strong evolution in the UV LF at z>8, with a factor of ~10
evolution seen in the luminosity density from z~10 to z~8.Comment: 22 pages, 12 figures, 6 tables, accepted for publication in the
Astrophysical Journa
- …