4,616 research outputs found

    Investigation of 5’-norcarbocyclic nucleoside analogues as antiprotozoal and antibacterial agents

    Get PDF
    Carbocyclic nucleosides have long played a role in antiviral, antiparasitic, and antibacterial therapies. Recent results from our laboratories from two structurally related scaffolds have shown promising activity against both Mycobacterium tuberculosis and several parasitic strains. As a result, a small structure activity relationship study was designed to further probe their activity and potential. Their synthesis and the results of the subsequent biological activity are reported herein

    Radio Scintillation due to Discontinuities in the Interstellar Plasma Density

    Get PDF
    We develop the theory of interstellar scintillation as caused by an irregular plasma having a power-law spatial density spectrum with a spectral exponent of 4 corresponding to a medium with abrupt changes in its density. An ``outer scale'' is included in the model representing the typical scale over which the density of the medium remains uniform. Such a spectrum could be used to model plasma shock fronts in supernova remnants or other plasma discontinuities. We investigate and develop equations for the decorrelation bandwidth of diffractive scintillations and the refractive scintillation index and compare our results with pulsar measurements. We consider both a medium concentrated in a thin layer and an extended irregular medium. We conclude that the discontinuity model gives satisfactory agreement for many diffractive measurements, in particular the VLBI meaurements of the structure function exponent between 5/3 and 2. However, it gives less satisfactory agreement for the refractive scintillation index than does the Kolmogorov turbulence spectrum. The comparison suggests that the medium consists of a pervasive background distribution of turbulence embedded with randomly placed discrete plasma structures such as shocks or HII regions. This can be modeled by a composite spectrum following the Kolmogorov form at high wavenumbers and steepening at lower wavenumbers corresponding to the typical (inverse) size of the discrete structures. Such a model can also explain the extreme scattering events. However, lines of sight through the enhanced scattering prevalent at low galactic latitudes are accurately described by the Kolmogorov spectrum in an extended medium and do not appear to have a similar low-wavenumber steepening.Comment: Accpeted for ApJ vol 531, March 200

    Interstellar Plasma Turbulence Spectrum Toward the Pulsars PSR B0809+74 and B0950+08

    Full text link
    Interstellar scintillations of pulsars PSR B0809+74 and B0950+08 have been studied using observations at low frequencies (41, 62, 89, and 112 MHz). Characteristic temporal and frequency scales of diffractive scintillations at these frequencies have been determined. The comprehensive analysis of the frequency and temporal structure functions reduced to the same frequency has shown that the spectrum of interstellar plasma inhomogeneities toward both pulsars is described by a power law. The exponent of the spectrum of fluctuations of interstellar plasma inhomogeneities toward PSR B0950+08 (n = 3.00 +- 0.05) appreciably differs from the Kolmogorov exponent. Toward PSR B0809+74 the spectrum is a power law with an exponent n = 3.7 +- 0.1. A strong angular refraction has been detected toward PSR B0950+08. The distribution of inhomogeneities along the line of sight has been analyzed; it has been shown that the scintillations of PSR B0950+08 take place on a turbulent layer with enhanced electron density, which is localized at approximately 10 pc from the observer. For PSR B0809+74 the distribution of inhomogeneities is quasi-uniform. Mean-square fluctuations of electron density on inhomogeneities with a characteristic scale rho_0 = 10^7 m toward four pulsars have been estimated. On this scale the local turbulence level in the 10-pc layer is 20 times higher than in an extended region responsible for the scintillations of PSR B0809+74.Comment: 13 pages, 11 figure

    Hard X-ray Emission Clumps in the gamma-Cygni Supernova Remnant: an INTEGRAL-ISGRI View

    Get PDF
    Spatially resolved images of the galactic supernova remnant G78.2+2.1 (gamma-Cygni) in hard X-ray energy bands from 25 keV to 120 keV are obtained with the IBIS-ISGRI imager aboard the International Gamma-Ray Astrophysics Laboratory INTEGRAL. The images are dominated by localized clumps of about ten arcmin in size. The flux of the most prominent North-Western (NW) clump is (1.7 +/- 0.4) 10^{-11} erg/cm^2/s in the 25-40 keV band. The observed X-ray fluxes are in agreement with extrapolations of soft X-ray imaging observations of gamma-Cygni by ASCA GIS and spatially unresolved RXTE PCA data. The positions of the hard X-ray clumps correlate with bright patches of optical line emission, possibly indicating the presence of radiative shock waves in a shocked cloud. The observed spatial structure and spectra are consistent with model predictions of hard X-ray emission from nonthermal electrons accelerated by a radiative shock in a supernova interacting with an interstellar cloud, but the powerful stellar wind of the O9V star HD 193322 is a plausible candidate for the NW source as well.Comment: 5 pages, 5 figures, Astronomy and Astrophysics Letter

    The Close AGN Reference Survey (CARS): Tracing the circumnuclear star formation in the super-Eddington NLS1 Mrk 1044

    Get PDF
    The host galaxy conditions for rapid supermassive black hole growth are poorly understood. Narrow-line Seyfert 1 (NLS1) galaxies often exhibit high accretion rates and are hypothesized to be prototypes of active galactic nuclei (AGN) at an early stage of their evolution. We present VLT MUSE NFM-AO observations of Mrk 1044, the nearest super-Eddington accreting NLS1. Together with archival MUSE WFM data we aim to understand the host galaxy processes that drive Mrk 1044's black hole accretion. We extract the faint stellar continuum emission from the AGN-deblended host and perform spatially resolved emission line diagnostics with an unprecedented resolution. Combining both MUSE WFM and NFM-AO observations, we use a kinematic model of a thin rotating disk to trace the stellar and ionized gas motion from 10\,kpc down to 30\,pc around the nucleus. Mrk 1044's stellar kinematics follow circular rotation, whereas the ionized gas shows tenuous spiral features in the center. We resolve a compact star forming circumnuclear ellipse (CNE) that has a semi-minor axis of 306\,pc. Within this CNE, the gas is metal rich and its line ratios are entirely consistent with excitation by star formation. With an integrated SFR of 0.19±0.05Myr10.19 \pm 0.05 \,{\rm M}_\odot\,{\rm yr}^{-1} the CNE contributes 27% of the galaxy-wide star formation. We conclude that Mrk 1044's nuclear activity has not yet affected the circumnuclear star formation. Thus, Mrk 1044 is consistent with the idea that NLS1s are young AGN. A simple mass budget consideration suggests that the circumnuclear star formation and AGN phase are connected and the patterns in the ionized gas velocity field are a signature of the ongoing AGN feeding.Comment: accepted for publication in A&A, 17 pages, 14 figures, 1 table, for Fig. 5 associated animation see https://youtube.com/watch?v=H_WSgWJSCf

    The Gas Content in Galactic Disks: Correlation with Kinematics

    Full text link
    We consider the relationship between the total HI mass in late-type galaxies and the kinematic properties of their disks. The mass MHIM_HI for galaxies with a wide variety of properties, from dwarf dIrr galaxies with active star formation to giant low-brightness galaxies, is shown to correlate with the product VcR0V_c R_0 (VcV_c is the rotational velocity, and R0R_0 is the radial photometric disks scale length), which characterizes the specific angular momentum of the disk. This relationship, along with the anticorrelation between the relative mass of HI in a galaxy and VcV_c, can be explained in terms of the previously made assumption that the gas density in the disks of most galaxies is maintained at a level close to the threshold (marginal) stability of a gaseous layer to local gravitational perturbations. In this case, the regulation mechanism of the star formation rate associated with the growth of local gravitational instability in the gaseous layer must play a crucial role in the evolution of the gas content in the galactic disk.Comment: revised version to appear in Astronomy Letters, 8 pages, 5 EPS figure

    New early Triassic Lingulidae (Brachiopoda) genera and species from South China

    Full text link
    Two new genera, Sinolingularia gen. nov. and Sinoglottidia gen. nov., together with three new species, Sinolingularia huananensis gen. et sp. nov., Sinolingularia yini gen. et sp. nov. and Sinoglottidia archboldi gen. et sp. nov., are described on the basis of a large collection of well-preserved specimens from several sections straddling the Permian - Triassic boundary in South China. <br /

    Fading AGN candidates: AGN histories and outflow signatures

    Get PDF
    We consider the energy budgets and radiative history of eight fading active galactic nuclei (AGNs), identified from an energy shortfall between the requirements to ionize very extended (radius \u3e 10 kpc) ionized clouds and the luminosity of the nucleus as we view it directly. All show evidence of significant fading on timescales of ≈50,000 yr. We explore the use of minimum ionizing luminosity Qion derived from photoionization balance in the brightest pixels in Hα at each projected radius. Tests using presumably constant Palomar–Green QSOs, and one of our targets with detailed photoionization modeling, suggest that we can derive useful histories of individual AGNs, with the caveat that the minimum ionizing luminosity is always an underestimate and subject to uncertainties about fine structure in the ionized material. These consistency tests suggest that the degree of underestimation from the upper envelope of reconstructed Qion values is roughly constant for a given object and therefore does not prevent such derivation. The AGNs in our sample show a range of behaviors, with rapid drops and standstills; the common feature is a rapid drop in the last ≈2 × 104 yr before the direct view of the nucleus. The e-folding timescales for ionizing luminosity are mostly in the thousands of years, with a few episodes as short as 400 yr. In the limit of largely obscured AGNs, we find additional evidence for fading from the shortfall between even the lower limits from recombination balance and the maximum luminosities derived from far-infrared fluxes. We compare these long-term light curves, and the occurrence of these fading objects among all optically identified AGNs, to simulations of AGN accretion; the strongest variations over these timespans are seen in models with strong and local (parsec-scale) feedback. We present Gemini integral-field optical spectroscopy, which shows a very limited role for outflows in these ionized structures. While rings and loops of emission, morphologically suggestive of outflow, are common, their kinematic structure shows some to be in regular rotation. UGC 7342 exhibits local signatures of outflows \u3c300 km s−1, largely associated with very diffuse emission, and possibly entraining gas in one of the clouds seen in Hubble Space Telescope images. Only in the Teacup AGN do we see outflow signatures of the order of 1000 km s−1. In contrast to the extended emission regions around many radio-loud AGNs, the clouds around these fading AGNs consist largely of tidal debris being externally illuminated but not displaced by AGN outflows

    Temperature-Dependent Infrared Reflectivity Studies of Multiferroic TbMnO_{3}: Evidence for Spin-Phonon Coupling

    Get PDF
    We have measured near normal incidence far infrared (FIR) reflectivity spectra of a single crystal of TbMnO3 from 10K to 300K in the spectral range of 50 cm1^{-1} to 700 cm1^{-1}. Fifteen transverse optic (TO) and longitudinal optic (LO) modes are identified in the imaginary part of the dielectric function ϵ2\epsilon_2(ω\omega) and energy loss function Im(-1/ϵ\epsilon(ω\omega)), respectively. Some of the observed phonon modes show anomalous softening below the magnetic transition temperature TN_N (~ 46K). We attribute this anomalous softening to the spin-phonon coupling caused by phonon modulation of the super-exchange integral between the Mn3+^{3+} spins. The effective charge of oxygen (ZO_O) calculated using the measured LO-TO splitting increases below TN_N.Comment: 16 pages, 6 figures, 1 tabl
    corecore