8,255 research outputs found
CEP-stable Tunable THz-Emission Originating from Laser-Waveform-Controlled Sub-Cycle Plasma-Electron Bursts
We study THz-emission from a plasma driven by an incommensurate-frequency
two-colour laser field. A semi-classical transient electron current model is
derived from a fully quantum-mechanical description of the emission process in
terms of sub-cycle field-ionization followed by continuum-continuum electron
transitions. For the experiment, a CEP-locked laser and a near-degenerate
optical parametric amplifier are used to produce two-colour pulses that consist
of the fundamental and its near-half frequency. By choosing two incommensurate
frequencies, the frequency of the CEP-stable THz-emission can be continuously
tuned into the mid-IR range. This measured frequency dependence of the
THz-emission is found to be consistent with the semi-classical transient
electron current model, similar to the Brunel mechanism of harmonic generation
Relation between parameters of dust and parameters of molecular and atomic gas in extragalactic star-forming regions
The relationships between atomic and molecular hydrogen and dust of various
sizes in extragalactic star-forming regions are considered, based on
observational data from the Spitzer and Herschel infrared space telescopes, the
Very Large Array (atomic hydrogen emission) and IRAM (CO emission). The source
sample consists of approximately 300 star-forming regions in 11 nearby
galaxies. Aperture photometry has been applied to measure the fluxes in eight
infrared bands (3.6, 4.5, 5.8, 8, 24, 70, 100, and 160m), the atomic
hydrogen (21cm) line and CO (2--1) lines.
The parameters of the dust in the starforming regions were determined via
synthetic-spectra fitting, such as the total dust mass, the fraction of
polycyclic aromatic hydrocarbons (PAHs), etc. Comparison of the observed fluxes
with the measured parameters shows that the relationships between atomic
hydrogen, molecular hydrogen, and dust are different in low- and
high-metallicity regions. Low-metallicity regions contain more atomic gas, but
less molecular gas and dust, including PAHs. The mass of dust constitutes about
of the mass of molecular gas in all regions considered. Fluxes produced
by atomic and molecular gas do not correlate with the parameters of the stellar
radiation, whereas the dust fluxes grow with increasing mean intensity of
stellar radiation and the fraction of enhanced stellar radiation. The ratio of
the fluxes at 8 and 24m, which characterizes the PAH content, decreases
with increasing intensity of the stellar radiation, possibly indicating
evolutionary variations of the PAH content. The results confirm that the
contribution of the 24m emission to the total IR luminosity of
extragalactic star-forming regions does not depend on the metallicity.Comment: Published in Astronomy Reports, 2017, vol. 61, issue
Theory of high-order harmonic generation from molecules by intense laser pulses
We show that high-order harmonics generated from molecules by intense laser
pulses can be expressed as the product of a returning electron wave packet and
the photo-recombination cross section (PRCS) where the electron wave packet can
be obtained from simple strong-field approximation (SFA) or from a companion
atomic target. Using these wave packets but replacing the PRCS obtained from
SFA or from the atomic target by the accurate PRCS from molecules, the
resulting HHG spectra are shown to agree well with the benchmark results from
direct numerical solution of the time-dependent Schr\"odinger equation, for the
case of H in laser fields. The result illustrates that these powerful
theoretical tools can be used for obtaining high-order harmonic spectra from
molecules. More importantly, the results imply that the PRCS extracted from
laser-induced HHG spectra can be used for time-resolved dynamic chemical
imaging of transient molecules with temporal resolutions down to a few
femtoseconds.Comment: 10 pages, 5 figure
Scaling characteristics of ULF geomagnetic fields at the Guam seismoactive area and their dynamics in relation to the earthquake
International audienceThe long-term evolution of scaling (fractal) characteristics of the ULF geomagnetic fields in the seismoactive region of the Guam Island is studied in relation to the strong (Ms = 8.0) nearby earthquake of 8 August 1993. The selected period covers 10 months before and 10 months after the earthquake. The FFT procedure, Burlaga-Klein approach and Higuchi method, have been applied to calculate the scaling exponents and fractal dimensions of the ULF time series. It is found that the spectrum of ULF emissions exhibits, on average, a power law behaviour S(f ) ? f -b , which is a fingerprint of the typical fractal (self-affine) time series. The spectrum slope b fluctuates quasi-periodically during the course of time in a range of b = 2.5?0.7, which corresponds to the fractional Brownian motion with both persistent and antipersistent behaviour. An tendency is also found for the spectrum slope to decrease gradually when approaching the earthquake date. Such a tendency manifests itself at all local times, showing a gradual evolution of the structure of the ULF noise to a typical flicker noise structure in proximity to the large earthquake event. We suggest considering such a peculiarity as an earthquake precursory signature. One more effect related to the earthquake is revealed: the longest quasi-period, which is 27 days, disappeared from the variations of the ULF emission spectrum slope during the earthquake, and it reappeared three months after the event. Physical interpretation of the peculiarities revealed has been done on the basis of the SOC (self-organized criticality) concept
Selection of star-forming regions in galaxies with off-centre bars
В галактиках со смещенными барами NGC 4618 и NGC 4631 выделены области звездообразования (ОЗО) по данным наблюдений в инфракрасном (ИК) диапазоне: ближнем (3.6, 4.5, 5.8, 8.0 мкм) и среднем (24 мкм), а также в ультрафиолетовом диапазоне: ближнем (GALEX NUV) и дальнем (GALEX FUV). Для выделенных ОЗО оценены потоки излучения. Полученные результаты сопоставлены с данными для галактики с полярным кольцом NGC 660.Star-forming regions (SFR) are selected in offcentre-bar galaxies NGC 4618 and NGC 4631 based on observations in the infrared (IR) range: near-IR (3.6, 4.5, 5.8, 8.0 μm) and mid-IR (24 μm), and also in the ultraviolet range: (GALEX NUV) and the far (GALEX FUV). Radiation fluxes are estimated for the selected SFRs. Obtained results are related to the data for the polar ring galaxy NGC 660
Shell-model description of monopole shift in neutron-rich Cu
Variations in the nuclear mean-field, in neutron-rich nuclei, are
investigated within the framework of the nuclear shell model. The change is
identified to originate mainly from the monopole part of the effective two-body
proton-neutron interaction. Applications for the low-lying states in odd- Cu
nuclei are presented. We compare the results using both schematic and realistic
forces. We also compare the monopole shifts with the results obtained from
large-scale shell-model calculations, using the same realistic interaction, in
order to study two-body correlations beyond the proton mean-field variations.Comment: Phys. Rev. C (in press
Scattering and Diffraction in Magnetospheres of Fast Pulsars
We apply a theory of wave propagation through a turbulent medium to the
scattering of radio waves in pulsar magnetospheres. We find that under
conditions of strong density modulation the effects of magnetospheric
scintillations in diffractive and refractive regimes may be observable. The
most distinctive feature of the magnetospheric scintillations is their
independence on frequency.
Results based on diffractive scattering due to small scale inhomogeneities
give a scattering angle that may be as large as 0.1 radians, and a typical
decorrelation time of seconds.
Refractive scattering due to large scale inhomogeneities is also possible,
with a typical angle of radians and a correlation time of the order
of seconds. Temporal variation in the plasma density may also result
in a delay time of the order of seconds. The different scaling of the
above quantities with frequency may allow one to distinguish the effects of
propagation through a pulsar magnetosphere from the interstellar medium. In
particular, we expect that the magnetospheric scintillations are relatively
more important for nearby pulsars when observed at high frequencies.Comment: 19 pages, 1 Figur
- …
