8,255 research outputs found

    CEP-stable Tunable THz-Emission Originating from Laser-Waveform-Controlled Sub-Cycle Plasma-Electron Bursts

    Full text link
    We study THz-emission from a plasma driven by an incommensurate-frequency two-colour laser field. A semi-classical transient electron current model is derived from a fully quantum-mechanical description of the emission process in terms of sub-cycle field-ionization followed by continuum-continuum electron transitions. For the experiment, a CEP-locked laser and a near-degenerate optical parametric amplifier are used to produce two-colour pulses that consist of the fundamental and its near-half frequency. By choosing two incommensurate frequencies, the frequency of the CEP-stable THz-emission can be continuously tuned into the mid-IR range. This measured frequency dependence of the THz-emission is found to be consistent with the semi-classical transient electron current model, similar to the Brunel mechanism of harmonic generation

    Relation between parameters of dust and parameters of molecular and atomic gas in extragalactic star-forming regions

    Full text link
    The relationships between atomic and molecular hydrogen and dust of various sizes in extragalactic star-forming regions are considered, based on observational data from the Spitzer and Herschel infrared space telescopes, the Very Large Array (atomic hydrogen emission) and IRAM (CO emission). The source sample consists of approximately 300 star-forming regions in 11 nearby galaxies. Aperture photometry has been applied to measure the fluxes in eight infrared bands (3.6, 4.5, 5.8, 8, 24, 70, 100, and 160μ\mum), the atomic hydrogen (21cm) line and CO (2--1) lines. The parameters of the dust in the starforming regions were determined via synthetic-spectra fitting, such as the total dust mass, the fraction of polycyclic aromatic hydrocarbons (PAHs), etc. Comparison of the observed fluxes with the measured parameters shows that the relationships between atomic hydrogen, molecular hydrogen, and dust are different in low- and high-metallicity regions. Low-metallicity regions contain more atomic gas, but less molecular gas and dust, including PAHs. The mass of dust constitutes about 1%1\% of the mass of molecular gas in all regions considered. Fluxes produced by atomic and molecular gas do not correlate with the parameters of the stellar radiation, whereas the dust fluxes grow with increasing mean intensity of stellar radiation and the fraction of enhanced stellar radiation. The ratio of the fluxes at 8 and 24μ\mum, which characterizes the PAH content, decreases with increasing intensity of the stellar radiation, possibly indicating evolutionary variations of the PAH content. The results confirm that the contribution of the 24μ\mum emission to the total IR luminosity of extragalactic star-forming regions does not depend on the metallicity.Comment: Published in Astronomy Reports, 2017, vol. 61, issue

    Theory of high-order harmonic generation from molecules by intense laser pulses

    Full text link
    We show that high-order harmonics generated from molecules by intense laser pulses can be expressed as the product of a returning electron wave packet and the photo-recombination cross section (PRCS) where the electron wave packet can be obtained from simple strong-field approximation (SFA) or from a companion atomic target. Using these wave packets but replacing the PRCS obtained from SFA or from the atomic target by the accurate PRCS from molecules, the resulting HHG spectra are shown to agree well with the benchmark results from direct numerical solution of the time-dependent Schr\"odinger equation, for the case of H2+_2^+ in laser fields. The result illustrates that these powerful theoretical tools can be used for obtaining high-order harmonic spectra from molecules. More importantly, the results imply that the PRCS extracted from laser-induced HHG spectra can be used for time-resolved dynamic chemical imaging of transient molecules with temporal resolutions down to a few femtoseconds.Comment: 10 pages, 5 figure

    Scaling characteristics of ULF geomagnetic fields at the Guam seismoactive area and their dynamics in relation to the earthquake

    Get PDF
    International audienceThe long-term evolution of scaling (fractal) characteristics of the ULF geomagnetic fields in the seismoactive region of the Guam Island is studied in relation to the strong (Ms = 8.0) nearby earthquake of 8 August 1993. The selected period covers 10 months before and 10 months after the earthquake. The FFT procedure, Burlaga-Klein approach and Higuchi method, have been applied to calculate the scaling exponents and fractal dimensions of the ULF time series. It is found that the spectrum of ULF emissions exhibits, on average, a power law behaviour S(f ) ? f -b , which is a fingerprint of the typical fractal (self-affine) time series. The spectrum slope b fluctuates quasi-periodically during the course of time in a range of b = 2.5?0.7, which corresponds to the fractional Brownian motion with both persistent and antipersistent behaviour. An tendency is also found for the spectrum slope to decrease gradually when approaching the earthquake date. Such a tendency manifests itself at all local times, showing a gradual evolution of the structure of the ULF noise to a typical flicker noise structure in proximity to the large earthquake event. We suggest considering such a peculiarity as an earthquake precursory signature. One more effect related to the earthquake is revealed: the longest quasi-period, which is 27 days, disappeared from the variations of the ULF emission spectrum slope during the earthquake, and it reappeared three months after the event. Physical interpretation of the peculiarities revealed has been done on the basis of the SOC (self-organized criticality) concept

    Selection of star-forming regions in galaxies with off-centre bars

    Full text link
    В галактиках со смещенными барами NGC 4618 и NGC 4631 выделены области звездообразования (ОЗО) по данным наблюдений в инфракрасном (ИК) диапазоне: ближнем (3.6, 4.5, 5.8, 8.0 мкм) и среднем (24 мкм), а также в ультрафиолетовом диапазоне: ближнем (GALEX NUV) и дальнем (GALEX FUV). Для выделенных ОЗО оценены потоки излучения. Полученные результаты сопоставлены с данными для галактики с полярным кольцом NGC 660.Star-forming regions (SFR) are selected in offcentre-bar galaxies NGC 4618 and NGC 4631 based on observations in the infrared (IR) range: near-IR (3.6, 4.5, 5.8, 8.0 μm) and mid-IR (24 μm), and also in the ultraviolet range: (GALEX NUV) and the far (GALEX FUV). Radiation fluxes are estimated for the selected SFRs. Obtained results are related to the data for the polar ring galaxy NGC 660

    Shell-model description of monopole shift in neutron-rich Cu

    Full text link
    Variations in the nuclear mean-field, in neutron-rich nuclei, are investigated within the framework of the nuclear shell model. The change is identified to originate mainly from the monopole part of the effective two-body proton-neutron interaction. Applications for the low-lying states in odd-AA Cu nuclei are presented. We compare the results using both schematic and realistic forces. We also compare the monopole shifts with the results obtained from large-scale shell-model calculations, using the same realistic interaction, in order to study two-body correlations beyond the proton mean-field variations.Comment: Phys. Rev. C (in press

    Scattering and Diffraction in Magnetospheres of Fast Pulsars

    Get PDF
    We apply a theory of wave propagation through a turbulent medium to the scattering of radio waves in pulsar magnetospheres. We find that under conditions of strong density modulation the effects of magnetospheric scintillations in diffractive and refractive regimes may be observable. The most distinctive feature of the magnetospheric scintillations is their independence on frequency. Results based on diffractive scattering due to small scale inhomogeneities give a scattering angle that may be as large as 0.1 radians, and a typical decorrelation time of 10810^{-8} seconds. Refractive scattering due to large scale inhomogeneities is also possible, with a typical angle of 10310^{-3} radians and a correlation time of the order of 10410^{-4} seconds. Temporal variation in the plasma density may also result in a delay time of the order of 10410^{-4} seconds. The different scaling of the above quantities with frequency may allow one to distinguish the effects of propagation through a pulsar magnetosphere from the interstellar medium. In particular, we expect that the magnetospheric scintillations are relatively more important for nearby pulsars when observed at high frequencies.Comment: 19 pages, 1 Figur
    corecore