16,008 research outputs found
Spin interfaces in the Ashkin-Teller model and SLE
We investigate the scaling properties of the spin interfaces in the
Ashkin-Teller model. These interfaces are a very simple instance of lattice
curves coexisting with a fluctuating degree of freedom, which renders the
analytical determination of their exponents very difficult. One of our main
findings is the construction of boundary conditions which ensure that the
interface still satisfies the Markov property in this case. Then, using a novel
technique based on the transfer matrix, we compute numerically the left-passage
probability, and our results confirm that the spin interface is described by an
SLE in the scaling limit. Moreover, at a particular point of the critical line,
we describe a mapping of Ashkin-Teller model onto an integrable 19-vertex
model, which, in turn, relates to an integrable dilute Brauer model.Comment: 12 pages, 6 figure
Algebraic representation of correlation functions in integrable spin chains
Taking the XXZ chain as the main example, we give a review of an algebraic
representation of correlation functions in integrable spin chains obtained
recently. We rewrite the previous formulas in a form which works equally well
for the physically interesting homogeneous chains. We discuss also the case of
quantum group invariant operators and generalization to the XYZ chain.Comment: 31 pages, no figur
A recursion formula for the correlation functions of an inhomogeneous XXX model
A new recursion formula is presented for the correlation functions of the
integrable spin 1/2 XXX chain with inhomogeneity. It relates the correlators
involving n consecutive lattice sites to those with n-1 and n-2 sites. In a
series of papers by V. Korepin and two of the present authors, it was
discovered that the correlators have a certain specific structure as functions
of the inhomogeneity parameters. Our formula allows for a direct proof of this
structure, as well as an exact description of the rational functions which has
been left undetermined in the previous works.Comment: 37 pages, 1 figure, Proof of Lemma 4.8 modifie
Raising and lowering operators, factorization and differential/difference operators of hypergeometric type
Starting from Rodrigues formula we present a general construction of raising
and lowering operators for orthogonal polynomials of continuous and discrete
variable on uniform lattice. In order to have these operators mutually adjoint
we introduce orthonormal functions with respect to the scalar product of unit
weight. Using the Infeld-Hull factorization method, we generate from the
raising and lowering operators the second order self-adjoint
differential/difference operator of hypergeometric type.Comment: LaTeX, 24 pages, iopart style (late submission
Form factors of descendant operators: Free field construction and reflection relations
The free field representation for form factors in the sinh-Gordon model and
the sine-Gordon model in the breather sector is modified to describe the form
factors of descendant operators, which are obtained from the exponential ones,
\e^{\i\alpha\phi}, by means of the action of the Heisenberg algebra
associated to the field . As a check of the validity of the
construction we count the numbers of operators defined by the form factors at
each level in each chiral sector. Another check is related to the so called
reflection relations, which identify in the breather sector the descendants of
the exponential fields \e^{\i\alpha\phi} and \e^{\i(2\alpha_0-\alpha)\phi}
for generic values of . We prove the operators defined by the obtained
families of form factors to satisfy such reflection relations. A generalization
of the construction for form factors to the kink sector is also proposed.Comment: 29 pages; v2: minor corrections, some references added; v3: minor
corrections; v4,v5: misprints corrected; v6: minor mistake correcte
Two-Loop Static QCD Potential for General Colour State
In this letter, we extend the known results for the QCD potential between a
static quark and its antiquark by computing the two-loop corrections to the
colour-octet state.Comment: 7 page
Conformal Curves in Potts Model: Numerical Calculation
We calculated numerically the fractal dimension of the boundaries of the
Fortuin-Kasteleyn clusters of the -state Potts model for integer and
non-integer values of on the square lattice.
In addition we calculated with high accuracy the fractal dimension of the
boundary points of the same clusters on the square domain. Our calculation
confirms that this curves can be described by SLE.Comment: 11 Pages, 4 figure
Neutrino oscillations: Entanglement, energy-momentum conservation and QFT
We consider several subtle aspects of the theory of neutrino oscillations
which have been under discussion recently. We show that the -matrix
formalism of quantum field theory can adequately describe neutrino oscillations
if correct physics conditions are imposed. This includes space-time
localization of the neutrino production and detection processes. Space-time
diagrams are introduced, which characterize this localization and illustrate
the coherence issues of neutrino oscillations. We discuss two approaches to
calculations of the transition amplitudes, which allow different physics
interpretations: (i) using configuration-space wave packets for the involved
particles, which leads to approximate conservation laws for their mean energies
and momenta; (ii) calculating first a plane-wave amplitude of the process,
which exhibits exact energy-momentum conservation, and then convoluting it with
the momentum-space wave packets of the involved particles. We show that these
two approaches are equivalent. Kinematic entanglement (which is invoked to
ensure exact energy-momentum conservation in neutrino oscillations) and
subsequent disentanglement of the neutrinos and recoiling states are in fact
irrelevant when the wave packets are considered. We demonstrate that the
contribution of the recoil particle to the oscillation phase is negligible
provided that the coherence conditions for neutrino production and detection
are satisfied. Unlike in the previous situation, the phases of both neutrinos
from decay are important, leading to a realization of the
Einstein-Podolsky-Rosen paradox.Comment: 30 pages, 3 eps figures; presentation improved, clarifications added.
To the memory of G.T. Zatsepi
Exact evaluation of density matrix elements for the Heisenberg chain
We have obtained all the density matrix elements on six lattice sites for the
spin-1/2 Heisenberg chain via the algebraic method based on the quantum
Knizhnik-Zamolodchikov equations. Several interesting correlation functions,
such as chiral correlation functions, dimer-dimer correlation functions, etc...
have been analytically evaluated. Furthermore we have calculated all the
eigenvalues of the density matrix and analyze the eigenvalue-distribution. As a
result the exact von Neumann entropy for the reduced density matrix on six
lattice sites has been obtained.Comment: 33 pages, 4 eps figures, 3 author
- …