3 research outputs found

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    A rare variant of the TYK2 gene is confirmed to be associated with multiple sclerosis.

    No full text
    A rare functional variant within the TYK2 gene (rs34536443) has been reported as protective in multiple sclerosis (MS) in recent studies. However, because of the low frequency of the minor allele (minor allele frequency=0.04), genome-wide significant association has been hard to establish. We genotyped 5429 Nordic MS cases and 6167 healthy controls for this TYK2 non-synonymous single-nucleotide polymorphism (ns-SNP), and combined the Nordic genotype data with raw genotypes from previous studies. The combined Nordic analysis showed significant association with MS (P=5 x 10(-4), odds ratio (OR) 0.78), and by mega-analysis of 10 642 MS patients, 10 620 controls and 2110 MS trios, the association at genome-wide significance level (P=5.08 x 10(-9), OR 0.77) was shown

    The Genetic Association of Variants in CD6, TNFRSF1A and IRF8 to Multiple Sclerosis: A Multicenter Case-Control Study

    Get PDF
    Background In the recently published meta-analysis of multiple sclerosis genome-wide association studies De Jager et al. identified three single nucleotide polymorphisms associated to MS: rs17824933 (CD6), rs1800693 (TNFRSF1A) and rs17445836 (61.5 kb from IRF8). To refine our understanding of these associations we sought to replicate these findings in a large more extensive independent sample set of 11 populations of European origin. Principal Findings We calculated individual and combined associations using a meta-analysis method by Kazeem and Farral (2005). We confirmed the association of rs1800693 in TNFRSF1A (p 4.19×10−7, OR 1.12, 7,665 cases, 8,051 controls) and rs17445836 near IRF8 (p 5.35×10−10, OR 0.84, 6,895 cases, 7,580 controls and 596 case-parent trios) The SNP rs17824933 in CD6 also showed nominally significant evidence for association (p 2.19×10−5, OR 1.11, 8,047 cases, 9,174 controls, 604 case-parent trios). Conclusions Variants in TNFRSF1A and in the vicinity of IRF8 were confirmed to be associated in these independent cohorts, which supports the role of these loci in etiology of multiple sclerosis. The variant in CD6 reached genome-wide significance after combining the data with the original meta-analysis. Fine mapping is required to identify the predisposing variants in the loci and future functional studies will refine their molecular role in MS pathogenesis.United States. National Institutes of Health (grant RO1 NS 43559)United States. National Institutes of Health (grant RO1 NS049477)Academy of Finland. Center of Excellence for Complex Disease Genetics (grant 213506)Academy of Finland. Center of Excellence for Complex Disease Genetics (grant 129680)Sigrid Jusélius stiftelseBiocentrum Helsinki FoundationHelsinki University. Central Hospital Research FoundationNeuropromise EU project (grant LSHM-CT-2005-018637)Wellcome Trust (London, England) (grant 089061/Z/09/Z)Cambridge NIHR Biomedical Research CentreThe Danish Council for Strategic Research (grant 2142-08-0039)Italian Foundation for Multiple Sclerosis (FISM grants 2008/R/11)Regione Piemonte Ricerca Sanitaria Finalizzata (2007, 2008)Fondazione Cariplo (grant n° 2010- 0728)Italian Ministry of HealthCRT FoundationNational Multiple Sclerosis Society (U.S.)Swiss Multiple Sclerosis SocietyUnited States. National Institutes of Health (R01 NS067305
    corecore