14 research outputs found

    Test results at transonic speeds on a contoured over-the-wing propfan model

    Get PDF
    A semispan wing/body model with a powered highly loaded propeller has been tested to provide data on the propulsion installation drag of advanced propfan-powered aircraft. The model had a supercritical wing with a contoured over-the-wing nacelle. It was tested in the Ames Research Center's (ARC) 14-foot Transonic Wind Tunnel at a total pressure of 1 atm. The test was conducted at angles of attack from -0.5 to 4 deg at Mach numbers ranging from 0.6 to 0.8. The test objectives were to determine propeller performance, exhaust jet effects, propeller slipstream interference drag, and total powerplant installation drag. Test results indicated a total powerplant installation drag of 82 counts (0.0082) at a Mach number of 0.8 and a lift coefficient of 0.5, which is approximately 29 percent of a typical airplane cruise drag

    Top-mounted inlet performance for a V/STOL fighter/attack aircraft configuration

    Get PDF
    Inlet flow-field and compressor-face performance data were obtained for a 0.095-scale model of vertical/short take-off landing (V/STOL) fighter/attack aircraft configuration with twin top-mounted inlets. Tests were conducted at Mach numbers from 0.6 to 2.0 and angles of attack and sideslip up to 27 deg. and 12 deg., respectively. Reynolds number was held constant at 9.8 x 10 to the 6th power per meter. The effects of inlet location, wing leading-edge extension (LEX) planform area, canopy-dorsal integration, variable incidence canards, and wing leading- and trailing-edge flap deflections were determined. The results show that at Mach numbers up to 0.9, distortion is relatively low (20% or less) at all angles of attack and sideslip. However, at Mach numbers of 1.2 and above, operation may be restricted because of either high distortion or low pressure recovery (80% or less), or both. These difficulties may be overcome with alterations to the LEX/canopy/body juncture

    Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA.

    Get PDF
    Ground-based surveys of three coal fires and airborne surveys of two of the fires were conducted near Sheridan, Wyoming. The fires occur in natural outcrops and in abandoned mines, all containing Paleocene-age subbituminous coals. Diffuse (carbon dioxide (CO(2)) only) and vent (CO(2), carbon monoxide (CO), methane, hydrogen sulfide (H(2)S), and elemental mercury) emission estimates were made for each of the fires. Additionally, gas samples were collected for volatile organic compound (VOC) analysis and showed a large range in variation between vents. The fires produce locally dangerous levels of CO, CO(2), H(2)S, and benzene, among other gases. At one fire in an abandoned coal mine, trends in gas and tar composition followed a change in topography. Total CO(2) fluxes for the fires from airborne, ground-based, and rate of fire advancement estimates ranged from 0.9 to 780mg/s/m(2) and are comparable to other coal fires worldwide. Samples of tar and coal-fire minerals collected from the mouth of vents provided insight into the behavior and formation of the coal fires

    Study of Two Axisymmetric Inlets Designed for Mach 3.5

    No full text

    Performance Estimates for a Supersonic Axisymmetric Inlet System

    No full text
    corecore