57 research outputs found

    Atlantic Meridional Overturning Circulation

    Get PDF
    • The AMOC is key to maintaining the mild climate of the UK. • The AMOC is predicted to decline in the 21st century in response to a changing climate. • Past abrupt changes in the AMOC have had dramatic climate consequences. • There is growing evidence that the AMOC has been declining for at least a decade, pushing the Atlantic Multidecadal Variability into a cool phase. • Short term fluctuations in the AMOC have proved to have unexpected impacts, including being linked with severe winters and abrupt sea-level rise

    Observation of a large lee wave in the Drake Passage

    Get PDF
    Lee waves are thought to play a prominent role in Southern Ocean dynamics, facilitating a transfer of energy from the jets of the Antarctic Circumpolar Current to microscale, turbulent motions important in water mass transformations. Two EM-APEX profiling floats deployed in the Drake Passage during the Diapycnal and Isopycnal Mixing Experiment (DIMES) independently measured a 120 ± 20-m vertical amplitude lee wave over the Shackleton Fracture Zone. A model for steady EM-APEX motion is developed to calculate absolute vertical water velocity, augmenting the horizontal velocity measurements made by the floats. The wave exhibits fluctuations in all three velocity components of over 15 cm s−1 and an intrinsic frequency close to the local buoyancy frequency. The wave is observed to transport energy and horizontal momentum vertically at respective peak rates of 1.3 ± 0.2 W m−2 and 8 ± 1 N m−2. The rate of turbulent kinetic energy dissipation is estimated using both Thorpe scales and a method that isolates high-frequency vertical kinetic energy and is found to be enhanced within the wave to values of order 10−7 W kg−1. The observed vertical flux of energy is significantly larger than expected from idealized numerical simulations and also larger than observed depth-integrated dissipation rates. These results provide the first unambiguous observation of a lee wave in the Southern Ocean with simultaneous measurements of its energetics and dynamics

    A dynamically based method for estimating the Atlantic meridional overturning circulation at 26° N from satellite altimetry

    Get PDF
    The large-scale system of ocean currents that transport warm waters in the upper 1000 m northward and return deeper cooler waters southward is known as the Atlantic meridional overturning circulation (AMOC). Variations in the AMOC have significant repercussions for the climate system; hence, there is a need for long-term monitoring of AMOC fluctuations. Currently the longest record of continuous directly measured AMOC changes is from the RAPID-MOCHA-WBTS programme, initiated in 2004. The RAPID programme and other mooring programmes have revolutionised our understanding of large-scale circulation; however, by design they are constrained to measurements at a single latitude and cannot tell us anything pre-2004. Nearly global coverage of surface ocean data from satellite altimetry has been available since the launch of the TOPEX/Poseidon satellite in 1992 and has been shown to provide reliable estimates of surface ocean transports on interannual timescales including previous studies that have investigated empirical correlations between sea surface height variability and the overturning circulation. Here we show a direct calculation of ocean circulation from satellite altimetry of the upper mid-ocean transport (UMO), the Gulf Stream transport through the Florida Straits (GS), and the AMOC using a dynamically based method that combines geostrophy with a time mean of the vertical structure of the flow from the 26∘ N RAPID moorings. The satellite-based transport captures 56 %, 49 %, and 69 % of the UMO, GS, and AMOC transport variability, respectively, from the 26∘ N RAPID array on interannual (18-month) timescales. Further investigation into the vertical structure of the horizontal transport shows that the first baroclinic mode accounts for 83 % of the interior geostrophic variability, and the combined barotropic and first baroclinic mode representation of dynamic height accounts for 98 % of the variability. Finally, the methods developed here are used to reconstruct the UMO and the AMOC for the time period pre-dating RAPID, 1993 to 2003. The effective implementation of satellite-based method for monitoring the AMOC at 26∘ N lays down the starting point for monitoring large-scale circulation at all latitudes

    A dynamically based method for estimating the Atlantic overturning circulation at 26° N from satellite altimetry

    Get PDF
    The large-scale system of ocean currents that transport warm surface (1000 m) waters northward and return cooler waters southward is known as the Atlantic meridional overturning circulation (AMOC). Variations in the AMOC have significant repercussions for the climate system, hence there is a need for long term monitoring of AMOC fluctuations. Currently the longest record of continuous directly measured AMOC changes is from the RAPID-MOCHA-WBTS programme, initiated in 2004. The RAPID programme, and other mooring programmes, have revolutionised our understanding of large-scale circulation, however, by design they are constrained to measurements at a single latitude. High global coverage of surface ocean data from satellite altimetry is available since the launch of TOPEX/Poseidon satellite in 1992 and has been shown to provide reliable estimates of surface ocean transports on interannual time scales. Here we show that a direct calculation of ocean circulation from satellite altimetry compares well with transport estimates from the 26° N RAPID array on low frequency (18-month) time scales for the upper mid-ocean transport (UMO; r = 0.75), the Gulf Stream transport through the Florida Straits (r = 0.70), and the AMOC (r = 0.83). The vertical structure of the circulation is also investigated, and it is found that the first baroclinic mode accounts for 83 % of the interior geostrophic variability, while remaining variability is explained by the barotropic mode. Finally, the UMO and the AMOC are estimated from historical altimetry data (1993 to 2018) using a dynamically based method that incorporates the vertical structure of the flow. The effective implementation of satellite-based method for monitoring the AMOC at 26° N lays down the starting point for monitoring large-scale circulation at all latitudes

    Observed eddy-internal wave interactions in the Southern Ocean

    Get PDF
    The physical mechanisms that remove energy from the Southern Ocean’s vigorous mesoscale eddy field are not well understood. One proposed mechanism is direct energy transfer to the internal wave field in the ocean interior, via eddy-induced straining and shearing of preexisting internal waves. The magnitude, vertical structure, and temporal variability of the rate of energy transfer between eddies and internal waves is quantified from a 14-month deployment of a mooring cluster in the Scotia Sea. Velocity and buoyancy observations are decomposed into wave and eddy components, and the energy transfer is estimated using the Reynolds-averaged energy equation. We find that eddies gain energy from the internal wave field at a rate of −2.2 ± 0.6 mW m−2, integrated from the bottom to 566 m below the surface. This result can be decomposed into a positive (eddy to wave) component, equal to 0.2 ± 0.1 mW m−2, driven by horizontal straining of internal waves, and a negative (wave to eddy) component, equal to −2.5 ± 0.6 mW m−2, driven by vertical shearing of the wave spectrum. Temporal variability of the transfer rate is much greater than the mean value. Close to topography, large energy transfers are associated with low-frequency buoyancy fluxes, the underpinning physics of which do not conform to linear wave dynamics and are thereby in need of further research. Our work suggests that eddy–internal wave interactions may play a significant role in the energy balance of the Southern Ocean mesoscale eddy and internal wave fields

    Quantifying mesoscale-driven nitrate supply: a case study

    Get PDF
    The supply of nitrate to surface waters plays a crucial role in maintaining marine life. Physical processes at the mesoscale (~10-100?km) and smaller have been advocated to provide a major fraction of the global supply. Whilst observational studies have focussed on well-defined features, such as isolated eddies, the vertical circulation and nutrient supply in a typical 100-200?km square of ocean will involve a turbulent spectrum of interacting, evolving and decaying features. A crucial step in closing the ocean nitrogen budget is to be able to rank the importance of mesoscale fluxes against other sources of nitrate for surface waters for a representative area of open ocean. While this has been done using models, the vital observational equivalent is still lacking.To illustrate the difficulties that prevent us from putting a global estimate on the significance of the mesoscale observationally, we use data from a cruise in the Iceland Basin where vertical velocity and nitrate observations were made simultaneously at the same high spatial resolution. Local mesoscale nitrate flux is found to be an order of magnitude greater than that due to small-scale vertical mixing and exceeds coincident nitrate uptake rates and estimates of nitrate supply due to winter convection. However, a non-zero net vertical velocity for the region introduces a significant bias in regional estimates of the mesoscale vertical nitrate transport. The need for synopticity means that a more accurate estimate can not be simply found by using a larger survey area. It is argued that time-series, rather than spatial surveys, may be the best means to quantify the contribution of mesoscale processes to the nitrate budget of the surface ocean

    A 30-year reconstruction of the Atlantic meridional overturning circulation shows no decline

    Get PDF
    A decline in Atlantic meridional overturning circulation (AMOC) strength has been observed between 2004 and 2012 by the RAPID-MOCHA-WBTS (RAPID – Meridional Overturning Circulation and Heatflux Array – Western Boundary Time Series, hereafter RAPID array) with this weakened state of the AMOC persisting until 2017. Climate model and paleo-oceanographic research suggests that the AMOC may have been declining for decades or even centuries before this; however direct observations are sparse prior to 2004, giving only “snapshots” of the overturning circulation. Previous studies have used linear models based on upper-layer temperature anomalies to extend AMOC estimates back in time; however these ignore changes in the deep circulation that are beginning to emerge in the observations of AMOC decline. Here we develop a higher-fidelity empirical model of AMOC variability based on RAPID data and associated physically with changes in thickness of the persistent upper, intermediate, and deep water masses at 26∘ N and associated transports. We applied historical hydrographic data to the empirical model to create an AMOC time series extending from 1981 to 2016. Increasing the resolution of the observed AMOC to approximately annual shows multi-annual variability in agreement with RAPID observations and shows that the downturn between 2008 and 2012 was the weakest AMOC since the mid-1980s. However, the time series shows no overall AMOC decline as indicated by other proxies and high-resolution climate models. Our results reinforce that adequately capturing changes to the deep circulation is key to detecting any anthropogenic climate-change-related AMOC decline

    Pending recovery in the strength of the meridional overturning circulation at 26° N

    Get PDF
    The strength of the Atlantic meridional overturning circulation (AMOC) at 26∘ N has now been continuously measured by the RAPID array over the period April 2004–September 2018. This record provides unique insight into the variability of the large-scale ocean circulation, previously only measured by sporadic snapshots of basin-wide transport from hydrographic sections. The continuous measurements have unveiled striking variability on timescales of days to a decade, driven largely by wind forcing, contrasting with previous expectations about a slowly varying buoyancy-forced large-scale ocean circulation. However, these measurements were primarily observed during a warm state of the Atlantic multidecadal variability (AMV) which has been steadily declining since a peak in 2008–2010. In 2013–2015, a period of strong buoyancy forcing by the atmosphere drove intense water-mass transformation in the subpolar North Atlantic and provides a unique opportunity to investigate the response of the large-scale ocean circulation to buoyancy forcing. Modelling studies suggest that the AMOC in the subtropics responds to such events with an increase in overturning transport, after a lag of 3–9 years. At 45∘ N, observations suggest that the AMOC may already be increasing. Examining 26∘ N, we find that the AMOC is no longer weakening, though the recent transport is not above the long-term mean. Extending the record backwards in time at 26∘ N with ocean reanalysis from GloSea5, the transport fluctuations at 26∘ N are consistent with a 0- to 2-year lag from those at 45∘ N, albeit with lower magnitude. Given the short span of time and anticipated delays in the signal from the subpolar to subtropical gyres, it is not yet possible to determine whether the subtropical AMOC strength is recovering nor how the AMOC at 26∘ N responds to intense buoyancy forcing

    Circulation-driven variability of Atlantic anthropogenic carbon transports and uptake

    Get PDF
    The ocean absorbs approximately a quarter of the carbon dioxide currently released to the atmosphere by human activities (Canth). A disproportionately large fraction accumulates in the North Atlantic due to the combined effects of transport by the Atlantic Meridional Overturning Circulation (AMOC) and air–sea exchange. However, discrepancies exist between modelled and observed estimates of the air–sea exchange due to unresolved ocean transport variability. Here we quantify the strength and variability of Canth transports across 26.5° N in the North Atlantic between 2004 and 2012 using circulation measurements from the RAPID mooring array and hydrographic observations. Over this period, decreasing circulation strength tended to decrease northward Canth transport, while increasing Canth concentrations (preferentially in the upper limb of the overturning circulation) tended to increase northward Canth transport. These two processes compensated each other over the 8.5-year period. While ocean transport and air–sea Canth fluxes are approximately equal in magnitude, the increasing accumulation rate of Canth in the North Atlantic combined with a stable ocean transport supply means we infer a growing contribution from air–sea Canth fluxes over the period. North Atlantic Canth accumulation is thus sensitive to AMOC strength, but growing atmospheric Canth uptake continues to significantly impact Canth transports
    corecore