56 research outputs found

    Mesoscale subduction at the Almeria-Oran front. Part 1: ageostrophic flow

    Get PDF
    This paper presents a detailed diagnostic analysis of hydrographic and current meter data from three, rapidly repeated, fine-scale surveys of the Almeria-Oran front. Instability of the frontal boundary, between surface waters of Atlantic and Mediterranean origin, is shown to provide a mechanism for significant heat transfer from the surface layers to the deep ocean in winter. The data were collected during the second observational phase of the EU funded OMEGA project on RRS Discovery cruise 224 during December 1996. High resolution hydrographic measurements using the towed undulating CTD vehicle, SeaSoar,. traced the subduction of Mediterranean Surface Water across the Almeria-Oran front. This subduction is shown to result from a significant baroclinic component to the instability of the frontal jet. The Q-vector formulation of the omega equation is combined with a scale analysis to quantitatively diagnose vertical transport resulting from mesoscale ageostrophic circulation. The analyses are presented and discussed in the presence of satellite and airborne remotely sensed data; which provide the basis for a thorough and novel approach to the determination of observational error

    RRS James Cook Cruise JC103, 23 Apr - 03 Jun 2014. RAPID moorings cruise report

    Get PDF
    This cruise report covers scientific operations conducted during RRS James Cook Cruise 103. The purpose of the cruise was the refurbishment of an array of moorings spanning the latitude of 26.5°N from the Bahamas to the Canary Islands. Cruise JC103 departed from Port of Spain on Wednesday 23rd April 2014, calling twice at Nassau, Bahamas before finally docking in Santa Cruz de Tenerife on Wednesday 3rd June 2014. The moorings are part of a purposeful Atlantic wide mooring array for monitoring the Atlantic Meridional Overturning Circulation and the associated heat transport. The array is a joint UK-US programme and is known as the RAPID-MOCHA array. During JC103 moorings were serviced at sites: WBAL, WBADCP, WB1, WB2, WB2L, WBH2, WB4, WB4L, WB6, MAR0, MAR1, MAR1L, MAR2, MAR3, MAR3L, EB1, EB1L, EBHi, EBH1, EBH1L, EBH2, EBH3, EBH4, EBH4L. Sites with suffix ‘L’ denote landers fitted with bottom pressure recorders, WBADCP is a bottom mounted 75kHz ADCP. At the other sites moorings were equipped with CTDs and current meters. CTDs with oxygen sensors were, for the first time, deployed at WB1, WBH2, and WB4. Additionally two PIES (pressure and inverted echo sounder instruments) were recovered but not re-deployed at sites WBP1 and EBP2. Mooring MAR0 was not able to be recovered but was redeployed. A sediment trap mooring NOGST was also recovered and redeployed for the Ocean Biogeochemistry and Ecosystems Group at the NOCS. CTD stations were conducted throughout the cruise for purposes of providing pre- and post- deployment calibrations for mooring instrumentation and for testing mooring releases prior to deployment. Shipboard underway measurements were systematically logged, processed and calibrated, including: surface meteorology, 5m depth sea temperatures and salinities, water depth, and navigation. Water velocity profiles from 15 m to approximately 800 m depth were obtained using the two vessel mounted Acoustic Doppler Current Profilers (one 75 kHz and one 150 kHz). Six APEX Argo floats supplied by the UK Met Office, were deployed during the cruis

    Geothermal heating in the Panama Basin. Part I: hydrography of the basin

    Get PDF
    The Panama Basin serves as a laboratory to investigate abyssal water upwelling. The basin has only a single abyssal water inflow pathway through the narrow Ecuador Trench. The estimated critical inflow through the Trench reaches 0.34 ± 0.07 m s−1, resulting in an abyssal water volume inflow of 0.29 ± 0.07 Sv. The same trench carries the return flow of basin waters that starts just 200 m above the bottom and is approximately 400 m deeper than the depth of the next possible deep water exchange pathway at the Carnegie Ridge Saddle. The curvature of temperature‐salinity diagrams is used to differentiate the effect of geothermal heating on the deep Panama Basin waters that was found to reach as high as 2200 m depth, which is about 500 m above the upper boundary of the abyssal water layer

    Geothermal heating in the Panama Basin. Part II: abyssal water mass transformation

    Get PDF
    Diabatic upwelling of abyssal waters is investigated in the Panama Basin employing the water mass transformation framework of Walin [1982]. We find that, in large areas of the basin, the bottom boundary layer is very weakly stratified and extends hundreds of meters above the sea floor. Within the weakly stratified bottom boundary layer (wsBBL) neutral density layers intercept the bottom of the basin. The area of these density layer incrops increases gradually as the abyssal waters become lighter. Large incrop areas are associated with strong diabatic upwelling of abyssal water, geothermal heating being the largest buoyancy source. While a significant amount of water mass transformation is due to extreme turbulence downstream of the Ecuador Trench, the only abyssal water inflow passage, water mass transformation across the upper boundary of abyssal water layer is accomplished almost entirely by geothermal heating

    The Canary Basin contribution to the seasonal cycle of the Atlantic Meridional Overturning Circulation at 26°N

    Get PDF
    This study examines the seasonal cycle of the Atlantic Meridional Overturning Circulation (AMOC) and its eastern boundary contributions. The cycle has a magnitude of 6 Sv, as measured by the RAPID/MOCHA/WBTS project array at 26°N, which is driven largely by the eastern boundary. The eastern boundary variations are explored in the context of the regional circulation around the Canary Islands. There is a 3 month lag between maximum wind forcing and the largest eastern boundary transports, which is explained in terms of a model for Rossby wave generated at the eastern boundary. Two dynamic processes take place through the Lanzarote Passage (LP) in fall: the recirculation of the Canary Current and the northward flow of the Intermediate Poleward Undercurrent. In contrast, during the remaining seasons the transport through the LP is southward due to the Canary Upwelling Current. These processes are linked to the seasonal cycle of the AMOC

    Glider observations of enhanced deep water upwelling at a shelf break canyon: a mechanism for cross-slope carbon and nutrient exchange

    Get PDF
    Using underwater gliders we have identified canyon driven upwelling across the Celtic Sea shelf-break, in the vicinity of Whittard Canyon. The presence of this upwelling appears to be tied to the direction and strength of the local slope current, which is in itself highly variable. During typical summer time equatorward flow, an unbalanced pressure gradient force and the resulting disruption of geostrophic flow can lead to upwelling along the main axis of two small shelf break canyons. As the slope current reverts to poleward flow, the upwelling stops and the remnants of the upwelled features are mixed into the local shelf water or advected away from the region. The upwelled features are identified by the presence of sub-pycnocline high salinity water on the shelf, and are upwelled from a depth of 300 m on the slope, thus providing a mechanism for the transport of nutrients across the shelf break onto the shelf

    Compensation between meridional flow components of the Atlantic MOC at 26°N

    Get PDF
    From ten years of observations of the Atlantic meridional overturning circulation (MOC) at 26° N (2004–2014), we revisit the question of flow compensation between components of the circulation. Contrasting with early results from the observations, transport variations of the Florida Current (FC) and upper mid-ocean (UMO) transports (top 1000 m east of the Bahamas) are now found to compensate on sub-annual timescales. The observed compensation between the FC and UMO transports is associated with horizontal circulation and means that this part of the correlated variability does not project onto the MOC. A deep baroclinic response to wind-forcing (Ekman transport) is also found in the lower North Atlantic Deep Water (LNADW; 3000–5000 m) transport. In contrast, co-variability between Ekman and the LNADW transports does contribute to overturning. On longer timescales, the southward UMO transport has continued to strengthen, resulting in a continued decline of the MOC. Most of this interannual variability of the MOC can be traced to changes in isopycnal displacements on the western boundary, within the top 1000 m and below 2000 m. Substantial trends are observed in isopycnal displacements in the deep ocean, underscoring the importance of deep boundary measurements to capture the variability of the Atlantic MOC

    Major variations in subtropical North Atlantic heat transport at short (5 day) timescales and their causes

    Get PDF
    Variability in the North Atlantic ocean heat transport at 26.5°N on short (5-day) timescales is identified and contrasted with different behaviour at monthly intervals using a combination of RAPID/MOCHA/WBTS measurements and the NEMO-LIM2 1/12° ocean circulation/sea ice model. Wind forcing plays the leading role in establishing the heat transport variability through the Ekman transport response of the ocean and the associated driving atmospheric conditions vary significantly with timescale. We find that at 5-day timescales the largest changes in the heat transport across 26.5°N coincide with north-westerly airflows originating over the American land mass that drive strong southward anomalies in the Ekman flow. During these events the northward heat transport reduces by 0.5-1.4 PW. In contrast, the Ekman transport response at longer monthly timescales is smaller in magnitude (up to 0.5 PW) and consistent with expected variations in the leading mode of North Atlantic atmospheric variability, the North Atlantic Oscillation. The north-westerly airflow mechanism can have a prolonged influence beyond the central 5-day timescale and on occasion can reduce the accumulated winter ocean heat transport into the North Atlantic by ∼40%
    corecore