8 research outputs found

    SDSS-III : massive spectroscopic surveys of the distant universe, the Milk Way, and extra-solar planetary systems

    Get PDF
    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8), which was made public in 2011 January and includes SDSS-I and SDSS-II images and spectra reprocessed with the latest pipelines and calibrations produced for the SDSS-III investigations. This paper presents an overview of the four surveys that comprise SDSS-III. The Baryon Oscillation Spectroscopic Survey will measure redshifts of 1.5 million massive galaxies and Lyα forest spectra of 150,000 quasars, using the baryon acoustic oscillation feature of large-scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z < 0.7 and at z ≈ 2.5. SEGUE- 2, an already completed SDSS-III survey that is the continuation of the SDSS-II Sloan Extension for Galactic Understanding and Exploration (SEGUE), measured medium-resolution (R = λ/Δλ ≈ 1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE, the Apache Point Observatory Galactic Evolution Experiment, will obtain high-resolution (R ≈ 30,000), high signal-to-noise ratio (S/N 100 per resolution element), H-band (1.51ÎŒm < λ < 1.70ÎŒm) spectra of 105 evolved, late-type stars, measuring separate abundances for ∌15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10–40ms−1, ∌24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of 2011 January, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS

    Antarctic marine chemical ecology: what is next?

    No full text
    71 pĂĄginas, 1 tabla, 3 figuras.Antarctic ecosystems are exposed to unique environmental characteristics resulting in communities structured both by biotic interactions such as predation and competition, as well as abiotic factors such as seasonality and ice-scouring. It is important to understand how ecological factors may trigger chemical mechanisms in marine Antarctic organisms as a response for survival. However, very little is known yet about the evolution of chemical compounds in Antarctic organisms. Investigations in chemical ecology have demonstrated over the last several years that defensive metabolites have evolved in numerous representative Antarctic species. This contradicts earlier theories concerning biogeographic variation in predation and chemical defenses. As reviewed here, a number of interesting natural products have been isolated from Antarctic organisms. However, we believe many more are still to be discovered. Currently, many groups such as microorganisms, planktonic organisms and deepsea fauna remain almost totally unknown regarding their natural products. Furthermore, for many described compounds, ecological roles have yet to be evaluated. In fact, much of the research carried out to date has been conducted in the laboratory, and only in a few cases in an ecologically relevant context. Therefore, there is a need to extend the experiments to the ïŹeld, as done in tropical and temperate marine ecosystems, or at least, to test the activity of the chemicals in natural conditions and ecologically meaningful interactions. Defense against predators is always one of the main topics when talking about the roles of natural products in species interactions, but many other interesting aspects, such as competition, chemoattraction, fouling avoidance and ultraviolet (UV) protection, also deserve further attention. In our opinion, challenging future developments are to be expected for Antarctic marine chemical ecology in the years to come.This work would not have been possible without the ïŹnancial support of the Ministry of Science and Education of Spain through different grants along recent years in the general frame of our ECOQUIM projects (ANT97-1590-E, ANT97-0273, REN2002-12006-E ⁄ANT, REN2003-00545 and CGL2004- 03356 ⁄ANT).Peer reviewe

    SDSS-III : massive spectroscopic surveys of the distant universe, the Milk Way, and extra-solar planetary systems

    Get PDF
    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8), which was made public in 2011 January and includes SDSS-I and SDSS-II images and spectra reprocessed with the latest pipelines and calibrations produced for the SDSS-III investigations. This paper presents an overview of the four surveys that comprise SDSS-III. The Baryon Oscillation Spectroscopic Survey will measure redshifts of 1.5 million massive galaxies and Lyα forest spectra of 150,000 quasars, using the baryon acoustic oscillation feature of large-scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z < 0.7 and at z ≈ 2.5. SEGUE- 2, an already completed SDSS-III survey that is the continuation of the SDSS-II Sloan Extension for Galactic Understanding and Exploration (SEGUE), measured medium-resolution (R = λ/Δλ ≈ 1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE, the Apache Point Observatory Galactic Evolution Experiment, will obtain high-resolution (R ≈ 30,000), high signal-to-noise ratio (S/N 100 per resolution element), H-band (1.51ÎŒm < λ < 1.70ÎŒm) spectra of 105 evolved, late-type stars, measuring separate abundances for ∌15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10–40ms−1, ∌24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of 2011 January, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS

    Antarctic marine chemical ecology: what is next?

    No full text
    corecore