40 research outputs found

    Targeted ablation and reorganization of the principal preplate neurons and their neuroblasts identified by golli promoter transgene expression in the neocortex of mice

    Get PDF
    The present study delineates the cellular responses of dorsal pallium to targeted genetic ablation of the principal preplate neurons of the neocortex. Ganciclovir treatment during prenatal development (E11–E13; where E is embryonic day) of mice selectively killed cells with shared S-phase vulnerability and targeted expression of a GPT [golli promoter transgene, linked to HSV-TK (herpes simplex virus-thymidine kinase), τ-eGFP (τ-enhanced green fluorescent protein) and lacZ (lacZ galactosidase) reporters] localized in preplate neurons. Morphogenetic fates of attacked neurons and neuroblasts, and their successors, were assessed by multiple labelling in time-series comparisons between ablated (HSV-TK+/0) and control (HSV-TK0/0) littermates. During ablation generation, neocortical growth was suppressed, and compensatory reorganization of non-GPT ventricular zone progenitors of dorsal pallium produced replacements for killed GPT neuroblasts. Replacement and surviving GPT neuroblasts then produced replacements for killed GPT neurons. Near-normal restoration of their complement delayed the settlement of GPT neurons into the reconstituted preplate, which curtailed the outgrowth of pioneer corticofugal axons. Based on this evidence, we conclude that specific cell killing in ablated mice can eliminate a major fraction of GPT neurons, with insignificant bystander killing. Also, replacement GPT neurons in ablated mice originate exclusively by proliferation from intermediate progenitor GPT neuroblasts, whose complement is maintained by non-GPT progenitors for inductive regulation of the total complement of GPT neurons. Finally, GPT neurons in both normal and ablated mice meet all morphogenetic criteria, including the ‘outside-in’ vertical gradient of settlement, presently used to identify principal preplate neurons. In ablated mice, delayed organization of these neurons desynchronizes and isolates developing neocortex from the rest of the brain, and permanently impairs its connectivity

    Egg shape in the Common Guillemot Uria aalge and Brunnich’s Guillemot U. lomvia: not a rolling matter?

    Get PDF
    The adaptive significance of avian egg shape is poorly understood, and has been studied only in those species producing pyriform (pear-shaped, or pointed) eggs: waders and guillemots (murres) Uria spp., albeit to a limited extent. In the latter, it is widely believed that the pyriform shape has evolved to minimise their likelihood of rolling off a cliff ledge: the idea being that the more pointed the egg, the narrower the arc in which it rolls, and the less likely it is it will fall from a cliff ledge. Previous research also claimed that the rolling trajectory—the diameter of the arc they describe—of Common Guillemot U. aalge eggs is influenced not only by its shape but also by its mass, with heavier (i.e. larger) eggs describing a wider arc than lighter eggs. The finding that both shape and mass determined the rolling trajectory of Common Guillemot eggs (the shape–mass hypothesis) was used to explain the apparent anomaly that Bru¨nnich’s Guillemot U. lomvia produce eggs that are less pointed, yet breed on narrower ledges than Common Guillemots. They are able to do this, it was suggested, because Bru¨nnich’s Guillemot eggs are smaller and lighter in mass than those of Common Guillemots. However, since some populations of Bru¨nnich’s Guillemots produce eggs that are as large or larger than those of some Common Guillemot populations, the shape–mass hypothesis predicts that that (1) larger (i.e. heavier) eggs of both guillemot species will be more pyriform (pointed) in shape, and (2) that eggs of the two species of same mass should be similarly pointed. We tested these predictions and found: (1) only a weak, positive association between egg volume and pointedness in both guillemot species (\3% of the variation in egg shape explained by egg volume), and (2) no evidence that eggs of the two species of similar mass were more similar in shape: regardless of their mass, Brunnich’s Guillemot eggs were less pointed than Common Guillemot eggs. Overall, our results call into question the long-held belief that protection from rolling is the main selective factor driving guillemot egg shape

    Live Imaging at the Onset of Cortical Neurogenesis Reveals Differential Appearance of the Neuronal Phenotype in Apical versus Basal Progenitor Progeny

    Get PDF
    The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors

    The Early Postnatal Nonhuman Primate Neocortex Contains Self-Renewing Multipotent Neural Progenitor Cells

    Get PDF
    The postnatal neocortex has traditionally been considered a non-neurogenic region, under non-pathological conditions. A few studies suggest, however, that a small subpopulation of neural cells born during postnatal life can differentiate into neurons that take up residence within the neocortex, implying that postnatal neurogenesis could occur in this region, albeit at a low level. Evidence to support this hypothesis remains controversial while the source of putative neural progenitors responsible for generating new neurons in the postnatal neocortex is unknown. Here we report the identification of self-renewing multipotent neural progenitor cells (NPCs) derived from the postnatal day 14 (PD14) marmoset monkey primary visual cortex (V1, striate cortex). While neuronal maturation within V1 is well advanced by PD14, we observed cells throughout this region that co-expressed Sox2 and Ki67, defining a population of resident proliferating progenitor cells. When cultured at low density in the presence of epidermal growth factor (EGF) and/or fibroblast growth factor 2 (FGF-2), dissociated V1 tissue gave rise to multipotent neurospheres that exhibited the ability to differentiate into neurons, oligodendrocytes and astrocytes. While the capacity to generate neurones and oligodendrocytes was not observed beyond the third passage, astrocyte-restricted neurospheres could be maintained for up to 6 passages. This study provides the first direct evidence for the existence of multipotent NPCs within the postnatal neocortex of the nonhuman primate. The potential contribution of neocortical NPCs to neural repair following injury raises exciting new possibilities for the field of regenerative medicine

    Hippocampal pyramidal cells: the reemergence of cortical lamination

    Get PDF
    The increasing resolution of tract-tracing studies has led to the definition of segments along the transverse axis of the hippocampal pyramidal cell layer, which may represent functionally defined elements. This review will summarize evidence for a morphological and functional differentiation of pyramidal cells along the radial (deep to superficial) axis of the cell layer. In many species, deep and superficial sublayers can be identified histologically throughout large parts of the septotemporal extent of the hippocampus. Neurons in these sublayers are generated during different periods of development. During development, deep and superficial cells express genes (Sox5, SatB2) that also specify the phenotypes of superficial and deep cells in the neocortex. Deep and superficial cells differ neurochemically (e.g. calbindin and zinc) and in their adult gene expression patterns. These markers also distinguish sublayers in the septal hippocampus, where they are not readily apparent histologically in rat or mouse. Deep and superficial pyramidal cells differ in septal, striatal, and neocortical efferent connections. Distributions of deep and superficial pyramidal cell dendrites and studies in reeler or sparsely GFP-expressing mice indicate that this also applies to afferent pathways. Histological, neurochemical, and connective differences between deep and superficial neurons may correlate with (patho-) physiological phenomena specific to pyramidal cells at different radial locations. We feel that an appreciation of radial subdivisions in the pyramidal cell layer reminiscent of lamination in other cortical areas may be critical in the interpretation of studies of hippocampal anatomy and function

    Cytokinesis of neuroepithelial cells can divide their basal process before anaphase

    No full text
    Neuroepithelial (NE) cells, the primary stem and progenitor cells of the vertebrate central nervous system, are highly polarized and elongated. They retain a basal process extending to the basal lamina, while undergoing mitosis at the apical side of the ventricular zone. By studying NE cells in the embryonic mouse, chick and zebrafish central nervous system using confocal microscopy, electron microscopy and time-lapse imaging, we show here that the basal process of these cells can split during M phase. Splitting occurred in the basal-to-apical direction and was followed by inheritance of the processes by either one or both daughter cells. A cluster of anillin, an essential component of the cytokinesis machinery, appeared at the distal end of the basal process in prophase and was found to colocalize with F-actin at bifurcation sites, in both proliferative and neurogenic NE cells. GFP–anillin in the basal process moved apically to the cell body prior to anaphase onset, followed by basal-to-apical ingression of the cleavage furrow in telophase. The splitting of the basal process of M-phase NE cells has implications for cleavage plane orientation and the relationship between mitosis and cytokinesis

    Multiple Origins of Neocortex: Contributions of the Dorsal Ventricular Ridge

    No full text
    The uniqueness of mammalian neocortex may ultimately only be clarified with improved understanding of the evolutionary origins of cortical structure and cortical functions. Comparative studies of the organization of the nonmammalian and mammalian telencephalon may provide valuable clues for understanding the evolution of neocortex. In the nonmammalian telencephalon, there are neuronal populations which correspond to cell groups in the neocortex of mammals in terms of connections, single unit-responses, and functions. Some of these populations lying within the dorsal ventricular ridge, however, are organized in a non-laminar, rather than laminar fashion. These observations suggest that the emergence of basic “cortical” circuit and laminar organization are distinct evolutionary events that can be differentiated and studied independently in order to understand each of their respective contributions to the cognitive functions of the neocortex. Moreover, in contrast to an argument that many cortical visual areas are derived from a single area by gene duplication (Allman, 1977, in press), the origins of neocortex can be separable into at least the precursors of non-laminar and laminar regions, and thus multiple evolutionary origins of neocortex are proposed
    corecore