18,652 research outputs found
An update on the correlation between the cosmic radiation intensity and the geomagnetic AA index
A statistical study between the cosmic ray intensity, as observed by a neutron monitor, and of the geomagnetic aa index, as representative of perturbations in the plasma and interplanetary magnetic field in the heliosphere, has been updated to specifically exclude time periods around the reversal of the solar magnetic field. The results of this study show a strong negative correlation for the period 1960 through 1968 with a correlation coefficient of approximately -0.86. However, there is essentially no correlation between the cosmic ray intensity and the aa index for the period 1972-1979 (i.e. correlation coefficient less than 0.16). These results would appear to support the theory of preferential particle propagation into the heliosphere vis the ecliptic during the period 1960-1968 and via the solar polar regions during 1972-1979
Unusual light spectra from a two-level atom in squeezed vacuum
We investigate the interaction of an atom with a multi-channel squeezed
vacuum. It turns out that the light coming out in a particular channel can have
anomalous spectral properties, among them asymmetry of the spectrum, absence of
the central peak as well as central hole burning for particular parameters. As
an example plane-wave squeezing is considered. In this case the above phenomena
can occur for the light spectra in certain directions. In the total spectrum
these phenomena are washed out.Comment: 16 pages, LaTeX, 3 figures (included via epsf
Evidence for orbital motion of CW Leonis from ground-based astrometry
© 2017 The Authors.Recent Atacama Large Millimeter/submillimeter Array (ALMA) observations indicate that CW Leo, the closest carbon-rich asymptotic giant branch star to Sun, might have a low-mass stellar companion. We present archival ground-based astrometric measurements of CW Leo obtained within the context of the Torino Parallax Program and with > 6 yr (1995-2001) of time baseline. The residuals to a single-star solution show significant curvature, and they are strongly correlatedwith thewell-known I-band photometric variations due to stellar pulsations. We describe successfully the astrometry of CW Leo with a variability-induced motion (VIM) + acceleration model. We obtain proper motion and parallax of the centre-of-mass of the binary, the former in fair agreement with recent estimates, the latter at the near end of the range of inferred distances based on indirect methods. The VIM + acceleration model results allow us to derive a companion mass in agreement with that inferred by ALMA, they point towards a somewhat longer period than implied by ALMA, but are not compatible with much longer period estimates. These data will constitute a fundamental contribution towards the full understanding of the orbital architecture of the system when combined with Gaia astrometry, providing an ~25 yr time baseline.Peer reviewe
The use of the McIlwain L-parameter to estimate cosmic ray vertical cutoff rigidities for different epochs of the geomagnetic field
Secular changes in the geomagnetic field between 1955 and 1980 have been large enough to produce significant differences in both the verical cutoff rigidities and in the L-value for a specified position. A useful relationship employing the McIlwain L-parameter to estimate vertical cutoff rigidities has been derived for the twenty-five year period
Quantum Hall Ferrimagnetism in lateral quantum dot molecules
We demonstrate the existance of ferrimagnetic and ferromagnetic phases in a
spin phase diagram of coupled lateral quantum dot molecules in the quantum Hall
regime. The spin phase diagram is determined from Hartree-Fock Configuration
Interaction method as a function of electron numbers N, magnetic field B,
Zeeman energy, and tunneling barrier height. The quantum Hall ferrimagnetic
phase corresponds to spatially imbalanced spin droplets resulting from strong
inter-dot coupling of identical dots. The quantum Hall ferromagnetic phases
correspond to ferromagnetic coupling of spin polarization at filling factors
between and .Comment: 4 pages, 4 figure
Statistical Agent Based Modelization of the Phenomenon of Drug Abuse
We introduce a statistical agent based model to describe the phenomenon of
drug abuse and its dynamical evolution at the individual and global level. The
agents are heterogeneous with respect to their intrinsic inclination to drugs,
to their budget attitude and social environment. The various levels of drug use
were inspired by the professional description of the phenomenon and this
permits a direct comparison with all available data. We show that certain
elements have a great importance to start the use of drugs, for example the
rare events in the personal experiences which permit to overcame the barrier of
drug use occasionally. The analysis of how the system reacts to perturbations
is very important to understand its key elements and it provides strategies for
effective policy making. The present model represents the first step of a
realistic description of this phenomenon and can be easily generalized in
various directions.Comment: 12 pages, 5 figure
Preparation of an Exciton Condensate of Photons on a 53-Qubit Quantum Computer
Quantum computation promises an exponential speedup of certain classes of
classical calculations through the preparation and manipulation of entangled
quantum states. So far most molecular simulations on quantum computers,
however, have been limited to small numbers of particles. Here we prepare a
highly entangled state on a 53-qubit IBM quantum computer, representing 53
particles, which reveals the formation of an exciton condensate of photon
particles and holes. While elusive for more than 50 years, such condensates
were recently achieved for electron-hole pairs in graphene bilayers and metal
chalcogenides. Our result with a photon condensate has the potential to further
the exploration of this new form of condensate that may play a significant role
in realizing efficient room-temperature energy transport
- …
