66 research outputs found

    Male and female mice show equal variability in food intake across 4-day spans that encompass estrous cycles.

    Get PDF
    The exclusion of female rodents from biomedical research is well documented and persists in large part due to perceptions that ovulatory cycles render female traits more variable than those of males, and females must be tested at each of four stages of the estrous cycle to generate reliable data. These beliefs are not empirically based. The magnitude of trait variance associated with the estrous cycle may be sufficiently low and of little impact, or trait variability of males tested on 4 consecutive days may be as great as that of females over the 4 days of the estrous cycle. Here, we analyzed food intake data from mice in 4-day blocks, corresponding to the females 4-day estrous cycle in several schedules of food procurement or reward. Variance was compared within and across individual mice. In no instance did the overall variance differ by sex under any of the food reward schedules. This extends earlier observations of trait variability in body temperature and locomotor activity of mice and supports the claim that there is no empirical basis for excluding female rodents from biomedical research

    3.4 Million Real-World Learning Management System Logins Reveal the Majority of Students Experience Social Jet Lag Correlated with Decreased Performance

    Get PDF
    Misalignments between endogenous circadian rhythms and the built environment (i.e., social jet lag, SJL) result in learning and attention deficits. Currently, there is no way to assess the impact of SJL on learning outcomes of large populations as a response to schedule choices, let alone to assess which individuals are most negatively impacted by these choices. We analyzed two years of learning management system login events for 14,894 Northeastern Illinois University (NEIU) students to investigate the capacity of such systems as tools for mapping the impact of SJL over large populations while maintaining the ability to generate insights about individuals. Personal daily activity profiles were validated against known biological timing effects, and revealed a majority of students experience more than 30 minutes of SJL on average, with greater amplitude correlating strongly with a significant decrease in academic performance, especially in people with later apparent chronotypes. Our findings demonstrate that online records can be used to map individual- and population-level SJL, allow deep mining for patterns across demographics, and could guide schedule choices in an effort to minimize SJL’s negative impact on learning outcomes

    Sex differences in variability across timescales in BALB/c mice.

    Get PDF
    BackgroundFemales are markedly underinvestigated in the biological and behavioral sciences due to the presumption that cyclic hormonal changes across the ovulatory cycle introduce excess variability to measures of interest in comparison to males. However, recent analyses indicate that male and female mice and rats exhibit comparable variability across numerous physiological and behavioral measures, even when the stage of the estrous cycle is not considered. Hormonal changes across the ovulatory cycle likely contribute cyclic, intra-individual variability in females, but the source(s) of male variability has, to our knowledge, not been investigated. It is unclear whether male variability, like that of females, is temporally structured and, therefore, quantifiable and predictable. Finally, whether males and females exhibit variability on similar time scales has not been explored.MethodsThese questions were addressed by collecting chronic, high temporal resolution locomotor activity (LA) and core body temperature (CBT) data from male and female BALB/c mice.ResultsContrary to expectation, males are more variable than females over the course of the day (diel variability) and exhibit higher intra-individual daily range than females in both LA and CBT. Between mice of a given sex, variability is comparable for LA but the inter-individual daily range in CBT is greater for males. To identify potential rhythmic processes contributing to these sex differences, we employed wavelet transformations across a range of periodicities (1-39 h).ConclusionsAlthough variability in circadian power is comparable between the sexes for both LA and CBT, infradian variability is greater in females and ultradian variability is greater in males. Thus, exclusion of female mice from studies because of estrous cycle variability may increase variance in investigations where only male measures are collected over a span of several hours and limit generalization of findings from males to females

    Artifact Rejection Methodology Enables Continuous, Noninvasive Measurement of Gastric Myoelectric Activity in Ambulatory Subjects.

    Get PDF
    The increasing prevalence of functional and motility gastrointestinal (GI) disorders is at odds with bottlenecks in their diagnosis, treatment, and follow-up. Lack of noninvasive approaches means that only specialized centers can perform objective assessment procedures. Abnormal GI muscular activity, which is coordinated by electrical slow-waves, may play a key role in symptoms. As such, the electrogastrogram (EGG), a noninvasive means to continuously monitor gastric electrical activity, can be used to inform diagnoses over broader populations. However, it is seldom used due to technical issues: inconsistent results from single-channel measurements and signal artifacts that make interpretation difficult and limit prolonged monitoring. Here, we overcome these limitations with a wearable multi-channel system and artifact removal signal processing methods. Our approach yields an increase of 0.56 in the mean correlation coefficient between EGG and the clinical "gold standard", gastric manometry, across 11 subjects (p < 0.001). We also demonstrate this system's usage for ambulatory monitoring, which reveals myoelectric dynamics in response to meals akin to gastric emptying patterns and circadian-related oscillations. Our approach is noninvasive, easy to administer, and has promise to widen the scope of populations with GI disorders for which clinicians can screen patients, diagnose disorders, and refine treatments objectively

    A time to remember: The role of circadian clocks in learning and memory

    Get PDF
    The circadian system has pronounced influence on learning and memory, manifesting as marked changes in memory acquisition and recall across the day. From a mechanistic perspective, the majority of studies have investigated mammalian hippocampal-dependent learning and memory, as this system is highly tractable. The hippocampus plays a major role in learning and memory, and has the potential to integrate circadian information in many ways, including information from local, independent oscillators, and through circadian modulation of neurogenesis, synaptic remodeling, intracellular cascades, and epigenetic regulation of gene expression. These local processes are combined with input from other oscillatory systems to synergistically augment hippocampal rhythmic function. This overview presents an account of the current state of knowledge on circadian interactions with learning and memory circuitry and provides a framework for those interested in further exploring these interactions

    Maternal stress during pregnancy alters fetal cortico-cerebellar connectivity in utero and increases child sleep problems after birth

    Get PDF
    Child sleep disorders are increasingly prevalent and understanding early predictors of sleep problems, starting in utero, may meaningfully guide future prevention efforts. Here, we investigated whether prenatal exposure to maternal psychological stress is associated with increased sleep problems in toddlers. We also examined whether fetal brain connectivity has direct or indirect influence on this putative association. Pregnant women underwent fetal resting-state functional connectivity MRI and completed questionnaires on stress, worry, and negative affect. At 3-year follow-up, 64 mothers reported on child sleep problems, and in the subset that have reached 5-year follow-up, actigraphy data (N = 25) has also been obtained. We observe that higher maternal prenatal stress is associated with increased toddler sleep concerns, with actigraphy sleep metrics, and with decreased fetal cerebellar-insular connectivity. Specific mediating effects were not identified for the fetal brain regions examined. The search for underlying mechanisms of the link between maternal prenatal stress and child sleep problems should be continued and extended to other brain areas

    Neural Pathways Integrating Circadian Information into the Decision to Trigger Ovulation

    No full text
    Thesis (Ph.D.)--University of Washington, 2012It has long been known that time-of-day information is required for successful initiation of the ovulation-triggering luteinizing hormone (LH) surge. This is true in rodents and evidence suggests it is true in humans too. LH release is driven by neural release of gonadotropin-releasing hormone (GnRH) from GnRH neurons in the medial preoptic area of the hypothalamus, and these neurons represent the last neuronal control point in the brain's decision to ovulate for all vertebrates. Time of day, or circadian, information is centrally regulated by the suprachiasmatic nucleus, also in the hypothalamus. How information from the SCN reaches the GnRH neurons was not known. Female rats are similar to humans in both relevant neurological structure and behavioral and physiological responses to circadian challenges. Using female rats as a model system, I provide evidence here that the suprachiasmatic nucleus times ovulation indirectly through projections from the dorsomedial (dm) SCN to the anteroventral periventricular nucleus (AVPV), wherein kisspeptin-producing neurons integrate this circadian information with estrodiol levels. I further show evidence suggesting that the AVPV is a peripheral circadian oscillator entrained by the dmSCN, and that circadian phase within the AVPV drives its receptivity to vasopressin - the primary neuropeptide transmitter released from the dmSCN. If both hormonal (estradiol) and daily cycles are in the right phase, then kisspeptin neurons stimulate GnRH neurons to trigger the LH surge. Kisspeptin is the strongest known driver of GnRH neuronal excitation, but I demonstrate that GnRH cells still exert some kisspeptin-independent control over the shape of the LH surge by integrating information coded by the ventrolateral SCN, which influences the amplitude of the LH surge in a phase-dependant manner
    • …
    corecore