158 research outputs found

    HD 24355 observed by the Kepler K2 mission: a rapidly oscillating Ap star pulsating in a distorted quadrupole mode

    Get PDF
    We present an analysis of the first Kepler K2 mission observations of a rapidly oscillating Ap (roAp) star, HD 24355 (V = 9.65). The star was discovered in SuperWASP broad-band photometry with a frequency of 224.31 d−1 (2596.18 μHz; P = 6.4 min) and an amplitude of 1.51 mmag, with later spectroscopic analysis of low-resolution spectra showing HD 24355 to be an A5 Vp SrEu star. The high-precision K2 data allow us to identify 13 rotationally split sidelobes to the main pulsation frequency of HD 24355. This number of sidelobes combined with an unusual rotational phase variation show this star to be the most distorted quadrupole roAp pulsator yet observed. In modelling this star, we are able to reproduce well the amplitude modulation of the pulsation, and find a close match to the unusual phase variations. We show this star to have a pulsation frequency higher than the critical cut-off frequency. This is currently the only roAp star observed with the Kepler spacecraft in short cadence mode that has a photometric amplitude detectable from the ground, thus allowing comparison between the mmag amplitude ground-based targets and the μmag spaced-based discoveries. No further pulsation modes are identified in the K2 data, showing this star to be a single-mode pulsator

    Suppressed phase variations in a high amplitude rapidly oscillating Ap star pulsating in a distorted quadrupole mode

    Get PDF
    We present the results of a multisite photometric observing campaign on the rapidly oscillating Ap (roAp) star 2MASS 16400299-0737293 (J1640; V=12.7V=12.7). We analyse photometric BB data to show the star pulsates at a frequency of 151.93151.93 d1^{-1} (1758.45μ1758.45 \muHz; P=9.5P=9.5 min) with a peak-to-peak amplitude of 20.68 mmag, making it one of the highest amplitude roAp stars. No further pulsation modes are detected. The stellar rotation period is measured at 3.6747±0.00053.6747\pm0.0005 d, and we show that rotational modulation due to spots is in anti-phase between broadband and BB observations. Analysis and modelling of the pulsation reveals this star to be pulsating in a distorted quadrupole mode, but with a strong spherically symmetric component. The pulsational phase variation in this star is suppressed, leading to the conclusion that the contribution of >2\ell>2 components dictate the shape of phase variations in roAp stars that pulsate in quadrupole modes. This is only the fourth time such a strong pulsation phase suppression has been observed, leading us to question the mechanisms at work in these stars. We classify J1640 as an A7 Vp SrEu(Cr) star through analysis of classification resolution spectra

    <em>TESS</em> Cycle 2 observations of roAp stars with 2-min cadence data

    Get PDF
    \ua9 The Author(s) 2023.We present the results of a systematic search of the Transiting Exoplanet Survey Satellite (TESS) 2-min cadence data for new rapidly oscillating Ap (roAp) stars observed during the Cycle 2 phase of its mission. We find seven new roAp stars previously unreported as such and present the analysis of a further 25 roAp stars that are already known. Three of the new stars show multiperiodic pulsations, while all new members are rotationally variable stars, leading to almost 70 per cent (22) of the roAp stars presented being α2 CVn-type variable stars. We show that targeted observations of known chemically peculiar stars are likely to overlook many new roAp stars, and demonstrate that multiepoch observations are necessary to see pulsational behaviour changes. We find a lack of roAp stars close to the blue edge of the theoretical roAp instability strip, and reaffirm that mode instability is observed more frequently with precise, space-based observations. In addition to the Cycle 2 observations, we analyse TESS data for all-known roAp stars. This amounts to 18 further roAp stars observed by TESS. Finally, we list six known roAp stars that TESS is yet to observe. We deduce that the incidence of roAp stars amongst the Ap star population is just 5.5 per cent, raising fundamental questions about the conditions required to excite pulsations in Ap stars. This work, coupled with our previous work on roAp stars in Cycle 1 observations, presents the most comprehensive, homogeneous study of the roAp stars in the TESS nominal mission, with a collection of 112 confirmed roAp stars in total

    Adenoma Formation following Limited Ablation of p120-Catenin in the Mouse Intestine

    Get PDF
    p120 loss destabilizes E-cadherin and could therefore result in tumor and/or metastasis-promoting activities similar to those caused by E-cadherin downregulation. Previously, we reported that p120 is essential in the intestine for barrier function, epithelial homeostasis and survival. Conditional p120 ablation in the mouse intestine induced severe inflammatory bowel disease, but long-term cancer-related studies were impossible because none of the animals survived longer than 21 days. Here, we used a tamoxifen-inducible mouse model (Vil-Cre-ERT2;p120fl/fl) to limit the extent of p120 ablation and thereby enable long-term studies. Reducing p120 KO to ∼10% of the intestinal epithelium produced long-lived animals outwardly indistinguishable from controls. Effects of prolonged p120 absence were then evaluated at intervals spanning 2 to 18 months. At all time points, immunostaining revealed microdomains of p120-null epithelium interspersed with normal epithelium. Thus, stochastic p120 ablation is compatible with crypt progenitor cell function and permitted lifelong renewal of the p120-null cells. Consistent with previous observations, a barrier defect and frequent infiltration of neutrophils was observed, suggesting that focal p120 loss generates a microenvironment disposed to chronic inflammation. We report that 45% of these animals developed tumors within 18 months of tamoxifen induction. Interestingly, β-catenin was upregulated in the majority, but none of the tumors were p120 null. Although further work is required to directly establish mechanism, we conclude that limited p120 ablation can promote tumorigenesis by an indirect non-cell autonomous mechanism. Given that byproducts of inflammation are known to be highly mutagenic, we suggest that tumorigenesis in this model is ultimately driven by the lifelong inability to heal chronic wounds and the substantially increased rates of stochastic gene mutation in tissue microenvironments subjected to chronic inflammation. Indeed, although technical issues precluded direct identification of mutations, β-catenin upregulation in human colon cancer almost invariably reflects mutations in APC and/or β-catenin

    Synergistic Anticancer Effects of the 9.2.27PE Immunotoxin and ABT-737 in Melanoma

    Get PDF
    In cancer, combinations of drugs targeting different cellular functions is well accepted to improve tumor control. We studied the effects of a Pseudomonas exotoxin A (PE) - based immunotoxin, the 9.2.27PE, and the BH-3 mimetic compound ABT-737 in a panel of melanoma cell lines. The drug combination resulted in synergistic cytotoxicity, and the cell death observed was associated with apoptosis, as activation of caspase-3, inactivation of Poly (ADP-ribose) polymerase (PARP) and increased DNA fragmentation could be prevented by pre-treatment with caspase and cathepsin inhibitors. We further show that ABT-737 caused endoplasmic reticulum (ER) stress with increased GRP78 and phosphorylated eIF2α protein levels. Moreover, treatment with ABT-737 increased the intracellular calcium levels, an effect which was enhanced by 9.2.27PE, which as a single entity drug had minimal effect on calcium release from the ER. In addition, silencing of Mcl-1 by short hairpin RNA (shRNA) enhanced the intracellular calcium levels and cytotoxicity caused by ABT-737. Notably, the combination of 9.2.27PE and ABT-737 caused growth delay in a human melanoma xenograft mice model, supporting further investigations of this particular drug combination

    Age-structured gametocyte allocation links immunity to epidemiology in malaria parasites

    Get PDF
    Background Despite a long history of attempts to model malaria epidemiology, the over-riding conclusion is that a detailed understanding of host-parasite interactions leading to immunity is required. It is still not known what governs the duration of an infection and how within-human parasite dynamics relate to malaria epidemiology. Presentation of the hypothesis Immunity to Plasmodium falciparum develops slowly and requires repeated exposure to the parasite, which thus generates age-structure in the host-parasite interaction. An age-structured degree of immunity would present the parasite with humans of highly variable quality. Evolutionary theory suggests that natural selection will mould adaptive phenotypes that are more precise (less variant) in "high quality" habitats, where lifetime reproductive success is best. Variability in malaria parasite gametocyte density is predicted to be less variable in those age groups who best infect mosquitoes. Thus, the extent to which variation in gametocyte density is a simple parasite phenotype reflecting the complex within-host parasite dynamics is addressed. Testing the hypothesis Gametocyte densities and corresponding infectiousness to mosquitoes from published data sets and studies in both rural and urban Cameroon are analysed. The mean and variation in gametocyte density according to age group are considered and compared with transmission success (proportion of mosquitoes infected). Across a wide range of settings endemic for malaria, the age group that infected most mosquitoes had the least variation in gametocyte density, i.e. there was a significant relationship between the variance rather than the mean gametocyte density and age-specific parasite transmission success. In these settings, the acquisition of immunity over time was evident as a decrease in asexual parasite densities with age. By contrast, in an urban setting, there were no such age-structured relationships either with variation in gametocyte density or asexual parasite density. Implications of the hypothesis Gametocyte production is seemingly predicted by evolutionary theory, insofar as a reproductive phenotype (gametocyte density) is most precisely expressed (i.e. is most invariant) in the most infectious human age group. This human age group would thus be expected to be the habitat most suitable for the parasite. Comprehension of the immuno-epidemiology of malaria, a requisite for any vaccine strategies, remains poor. Immunological characterization of the human population stratified by parasite gametocyte allocation would be a step forward in identifying the salient immunological pathways of what makes a human a good habitat

    Expression Profiling of Autism Candidate Genes during Human Brain Development Implicates Central Immune Signaling Pathways

    Get PDF
    The Autism Spectrum Disorders (ASD) represent a clinically heterogeneous set of conditions with strong hereditary components. Despite substantial efforts to uncover the genetic basis of ASD, the genomic etiology appears complex and a clear understanding of the molecular mechanisms underlying Autism remains elusive. We hypothesized that focusing gene interaction networks on ASD-implicated genes that are highly expressed in the developing brain may reveal core mechanisms that are otherwise obscured by the genomic heterogeneity of the disorder. Here we report an in silico study of the gene expression profile from ASD-implicated genes in the unaffected developing human brain. By implementing a biologically relevant approach, we identified a subset of highly expressed ASD-candidate genes from which interactome networks were derived. Strikingly, immune signaling through NFκB, Tnf, and Jnk was central to ASD networks at multiple levels of our analysis, and cell-type specific expression suggested glia—in addition to neurons—deserve consideration. This work provides integrated genomic evidence that ASD-implicated genes may converge on central cytokine signaling pathways

    Interrupting Malaria Transmission: Quantifying the Impact of Interventions in Regions of Low to Moderate Transmission

    Get PDF
    Malaria has been eliminated from over 40 countries with an additional 39 currently planning for, or committed to, elimination. Information on the likely impact of available interventions, and the required time, is urgently needed to help plan resource allocation. Mathematical modelling has been used to investigate the impact of various interventions; the strength of the conclusions is boosted when several models with differing formulation produce similar data. Here we predict by using an individual-based stochastic simulation model of seasonal Plasmodium falciparum transmission that transmission can be interrupted and parasite reintroductions controlled in villages of 1,000 individuals where the entomological inoculation rate is <7 infectious bites per person per year using chemotherapy and bed net strategies. Above this transmission intensity bed nets and symptomatic treatment alone were not sufficient to interrupt transmission and control the importation of malaria for at least 150 days. Our model results suggest that 1) stochastic events impact the likelihood of successfully interrupting transmission with large variability in the times required, 2) the relative reduction in morbidity caused by the interventions were age-group specific, changing over time, and 3) the post-intervention changes in morbidity were larger than the corresponding impact on transmission. These results generally agree with the conclusions from previously published models. However the model also predicted changes in parasite population structure as a result of improved treatment of symptomatic individuals; the survival probability of introduced parasites reduced leading to an increase in the prevalence of sub-patent infections in semi-immune individuals. This novel finding requires further investigation in the field because, if confirmed, such a change would have a negative impact on attempts to eliminate the disease from areas of moderate transmission

    Rapid automatized naming as an index of genetic liability to autism

    Get PDF
    This study investigated rapid automatized naming (RAN) ability in high functioning individuals with autism and parents of individuals with autism. Findings revealed parallel patterns of performance in parents and individuals with autism, where both groups had longer naming times than controls. Significant parent-child correlations were also detected, along with associations with language and personality features of the broad autism phenotype (retrospective reports of early language delay, socially reticent personality). Together, findings point towards RAN as a potential marker of genetic liability to autism

    No evidence for the association of DRD4 with ADHD in a Taiwanese population within-family study

    Get PDF
    BACKGROUND: Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent and highly heritable childhood disorder. The dopamine D4 receptor (DRD4) gene has shown a genetic association with ADHD in Caucasian populations with meta-analysis indicating a small but significant effect across datasets. It remains uncertain whether this association can be generalised to non-Caucasian ethnic groups. Here we investigate two markers within the DRD4 gene in a Taiwanese population, the exon 3 variable number tandem repeat (VNTR) and a 5' 120 base-pair duplication. METHODS: Within-family transmission disequilibrium tests of association of the 5' 120 base-pair duplication, and exon 3 VNTR in a Taiwanese population. RESULTS: No evidence of association of ADHD with either polymorphism in this population was observed. CONCLUSION: The DRD4 gene markers investigated were not found to be associated with ADHD in this Taiwanese sample. Further work in Taiwanese and other Asian populations will therefore be required to establish whether the reports of association of DRD4 genetic variants in Caucasian samples can be generalised to Asian populations
    corecore