85 research outputs found

    Genome Sequence of Magnetospirillum magnetotacticum Strain MS-1

    Get PDF
    Here, we report the genome sequence of Magnetospirillum magnetotacticum strain MS-1, which consists of of 36 contigs and 4,136 protein-coding genes

    Early Warning Solar Storm Prediction

    Get PDF

    Dual Mechanisms of LYN Kinase Dysregulation Drive Aggressive Behavior in Breast Cancer Cells

    Get PDF
    The SRC-family kinase LYN is highly expressed in triple-negative/basal-like breast cancer (TNBC) and in the cell of origin of these tumors, c-KIT-positive luminal progenitors. Here, we demonstrate LYN is a downstream effector of c-KIT in normal mammary cells and protective of apoptosis upon genotoxic stress. LYN activity is modulated by PIN1, a prolyl isomerase, and in BRCA1 mutant TNBC PIN1 upregulation activates LYN independently of c-KIT. Furthermore, the full-length LYN splice isoform (as opposed to the Δaa25-45 variant) drives migration and invasion of aggressive TNBC cells, while the ratio of splice variants is informative for breast cancer-specific survival across all breast cancers. Thus, dual mechanisms-uncoupling from upstream signals and splice isoform ratios-drive the activity of LYN in aggressive breast cancers

    Highway to heaven: mammary gland development and differentiation

    Get PDF
    In recent years, the mammary gland epithelium has been shown to be a mixture of differentiated cell populations in a hierarchical relationship with their stem and progenitor cells. However, the mechanisms that regulate their cellular differentiation processes are still unclear. The identification of genes that govern stem and progenitor cell expansion, or that determine daughter cell fate, will be of crucial interest for understanding breast cancer diversity and, ultimately, improving treatment. Two recent analyses have identified some of the key genes that regulate these processes, lighting up the highway to normal mammary gland development

    Methods in Mammary Gland Development and Cancer: the second ENDBC meeting - intravital imaging, genomics, modeling and metastasis

    Get PDF
    The second meeting of the European Network for Breast Development and Cancer (ENBDC) on 'Methods in Mammary Gland Development and Cancer' was held in April 2010 in Weggis, Switzerland. The focus was on genomics and bioinformatics, extracellular matrix and stroma-epithelial cell interactions, intravital imaging, the search for metastasis founder cells and mouse models of breast cancer

    It's all in the details: methods in breast development and cancer

    Get PDF
    The inaugural European Network for Breast Development and Cancer (ENBDC) meeting on 'Methods in Mammary Gland Development and Cancer' was held in Weggis, Switzerland last April. The goal was to discuss the details of techniques used to study mammary gland biology and tumourigenesis. Highlights of this meeting included the use of four-colour fluorescence for protein co-localisation in tissue microarrays, genome analysis at single cell resolution, technical issues in the isolation of normal and tumour stem cells, and the use of mouse models and mammary gland transplantations to elucidate gene function in mammary development and to study drug resistance in breast cancer

    Wnt and Neuregulin1/ErbB signalling extends 3D culture of hormone responsive mammary organoids

    Get PDF
    The development of in vitro culture systems quantitatively and qualitatively recapitulating normal breast biology is key to the understanding of mammary gland biology. Current three-dimensional mammary culture systems have not demonstrated concurrent proliferation and functional differentiation ex vivo in any system for longer than 2 weeks. Here, we identify conditions including Neuregulin1 and R-spondin 1, allowing maintenance and expansion of mammary organoids for 2.5 months in culture. The organoids comprise distinct basal and luminal compartments complete with functional steroid receptors and stem/progenitor cells able to reconstitute a complete mammary gland in vivo. Alternative conditions are also described that promote enrichment of basal cells organized into multiple layers surrounding a keratinous core, reminiscent of structures observed in MMTV-Wnt1 tumours. These conditions comprise a unique tool that should further understanding of normal mammary gland development, the molecular mechanism of hormone action and signalling events whose deregulation leads to breast tumourigenesis

    PHASES High Precision Differential Astrometry of delta Equulei

    Full text link
    delta Equulei is among the most well-studied nearby binary star systems. Results of its observation have been applied to a wide range of fundamental studies of binary systems and stellar astrophysics. It is widely used to calibrate and constrain theoretical models of the physics of stars. We report 27 high precision differential astrometry measurements of delta Equulei from the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES). The median size of the minor axes of the uncertainty ellipses for these measurements is 26 micro-arcseconds. These data are combined with previously published radial velocity data and other previously published differential astrometry measurements using other techniques to produce a combined model for the system orbit. The distance to the system is determined to within a twentieth of a parsec and the component masses are determined at the level of a percent. The constraints on masses and distance are limited by the precisions of the radial velocity data; we outline plans improve this deficiency and discuss the outlook for further study of this binary.Comment: Accepted by AJ. Complete versions of tables 2-7 now available at http://stuff.mit.edu/~matthew1/deltaEquTables/ (removed from astroph server

    Mouse mammary stem cells express prognostic markers for triple-negative breast cancer

    Get PDF
    Introduction Triple negative breast cancer (TNBC) is a heterogeneous group of tumours in which chemotherapy, the current mainstay of systemic treatment, is often initially beneficial but with a high risk of relapse and metastasis. There is currently no means of predicting which TNBC will relapse. We tested the hypothesis that the biological properties of normal stem cells are re-activated in tumour metastasis and that, therefore, the activation of normal mammary stem cell-associated gene sets in primary TNBC would be highly prognostic for relapse and metastasis. Methods Mammary basal stem and myoepithelial cells were isolated by flow cytometry and tested in low dose transplant assays. Gene expression microarrays were used to establish expression profiles of the stem and myoepithelial populations; these were compared to each other and to our previously established mammary epithelial gene expression profiles. Stem cell genes were classified by Gene Ontology (GO) analysis and the expression of a subset analysed in the stem cell population at single cell resolution. Activation of stem cell genes was interrogated across different breast cancer cohorts and within specific subtypes and tested for clinical prognostic power. Results A set of 323 genes was identified that was expressed significantly more highly in the purified basal stem cells compared to all other cells of the mammary epithelium. 109 out of 323 genes had been associated with stem cell features in at least one other study in addition to our own, providing further support for their involvement in the biology of this cell type. GO analysis demonstrated an enrichment of these genes for an association with cell migration, cytoskeletal regulation and tissue morphogenesis, consistent with a role in invasion and metastasis. Single cell resolution analysis showed that individual cells co-expressed both epithelial- and mesenchymal-associated genes/proteins. Most strikingly, we demonstrated that strong activity of this stem cell gene set in TNBCs identified those tumours most likely to rapidly progress to metastasis. Conclusions Our findings support the hypothesis that the biological properties of normal stem cells are drivers of metastasis and that these properties can be used to stratify patients with a highly heterogeneous disease such as TNBC
    • …
    corecore